What are the environmental consequences of mining operations in Arctic regions?
The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.
For more information, see the article:
π Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.
For more information, see the article:
π Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
mst.misis.ru
Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operationsβ¦
π4β€1π₯1π1π1
How do the parameters and characteristics of seismic-acoustic data acquisition systems affect the quality of geophysical and seismic exploration surveys?
In the case of helically-wound fiber, the frequency response depends on several key factors: integrating the measured value along the fiber based on the measurement; the angle of incidence on the cable; and the winding angle of the fiber in the cable. The authors of the article published in the journal "Mining Science and Technology" demonstrated that increasing the winding angle enhances the uniformity of the amplitude-frequency characteristics of longitudinal waves both in terms of frequencies and angles of incidence. At the same time, helical winding changes the effective response spacing (gauge length). This makes it possible, by summing the responses of the straight and helically-wound fibers due to the overlap of the spectra, to record frequencies that are suppressed in case of separate recording.
For more information, see the article:
π Chugaev A.V., Tarantin M.V. Amplitude-frequency response of a helically-wound fiber distributed acoustic sensor (DAS). Mining Science and Technology (Russia). 2023;8(1):13-21. https://doi.org/10.17073/2500-0632-2022-06-10
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #distributedacousticsensor #DAS #fiberopticsensor #seismicexploration #seismoacoustics #borehole #boreholeseismoacoustics #rayleighscattering #directivitypattern #amplitudefrequencyresponse #helicalwinding #longitudinalwaves #transversewaves #frequencyrange #effectivegaugelength #windingangle #incidenceangle #seismicwaves #mining #seismoacousticsignals #distributedsystems #fiberopticcable #frequencyresponse #frequencyrejection #signalsummation #broadbandsignals #boreholemeasurements #surfacemeasurements #bendradius #attenuationcoefficient #seismicsurveys #geophysicaltasks #opticalinterferometry
In the case of helically-wound fiber, the frequency response depends on several key factors: integrating the measured value along the fiber based on the measurement; the angle of incidence on the cable; and the winding angle of the fiber in the cable. The authors of the article published in the journal "Mining Science and Technology" demonstrated that increasing the winding angle enhances the uniformity of the amplitude-frequency characteristics of longitudinal waves both in terms of frequencies and angles of incidence. At the same time, helical winding changes the effective response spacing (gauge length). This makes it possible, by summing the responses of the straight and helically-wound fibers due to the overlap of the spectra, to record frequencies that are suppressed in case of separate recording.
For more information, see the article:
π Chugaev A.V., Tarantin M.V. Amplitude-frequency response of a helically-wound fiber distributed acoustic sensor (DAS). Mining Science and Technology (Russia). 2023;8(1):13-21. https://doi.org/10.17073/2500-0632-2022-06-10
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #distributedacousticsensor #DAS #fiberopticsensor #seismicexploration #seismoacoustics #borehole #boreholeseismoacoustics #rayleighscattering #directivitypattern #amplitudefrequencyresponse #helicalwinding #longitudinalwaves #transversewaves #frequencyrange #effectivegaugelength #windingangle #incidenceangle #seismicwaves #mining #seismoacousticsignals #distributedsystems #fiberopticcable #frequencyresponse #frequencyrejection #signalsummation #broadbandsignals #boreholemeasurements #surfacemeasurements #bendradius #attenuationcoefficient #seismicsurveys #geophysicaltasks #opticalinterferometry
π4β€1β‘1π₯1π1
We present the articles of the fourth issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
The review article examines 25 copper ore provinces in Russia, encompassing 150 copper deposits of various formations. The primary production is concentrated in copper-nickel and copper-pyrite deposits, while mining is actively developing at copper-porphyry and copper-skarn deposits. The Udokan deposit was commissioned in 2023, significantly increasing the production potential. The largest copper reserves are concentrated in the Norilsk-Kharaelakh, Kodar-Udokan, and Ural provinces. The reserve life is estimated at 47 years, and future development prospects are linked to the exploration of new deposits and the implementation of modern technologies.
For more information, see the article:
π Boyarko G.Yu., Lapteva A.M., Bolsunovskaya L.M. Mineral resource base of Russiaβs copper: current state and development prospects. Mining Science and Technology (Russia). 2024;9(4):352-386. https://doi.org/10.17073/2500-0632-2024-05-248
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #copper #ore #strategicrawmaterials #oreformations #deposit #province #region #reserves #resurce #mining #forecasting #nationalprojects #Russia
The review article examines 25 copper ore provinces in Russia, encompassing 150 copper deposits of various formations. The primary production is concentrated in copper-nickel and copper-pyrite deposits, while mining is actively developing at copper-porphyry and copper-skarn deposits. The Udokan deposit was commissioned in 2023, significantly increasing the production potential. The largest copper reserves are concentrated in the Norilsk-Kharaelakh, Kodar-Udokan, and Ural provinces. The reserve life is estimated at 47 years, and future development prospects are linked to the exploration of new deposits and the implementation of modern technologies.
For more information, see the article:
π Boyarko G.Yu., Lapteva A.M., Bolsunovskaya L.M. Mineral resource base of Russiaβs copper: current state and development prospects. Mining Science and Technology (Russia). 2024;9(4):352-386. https://doi.org/10.17073/2500-0632-2024-05-248
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #copper #ore #strategicrawmaterials #oreformations #deposit #province #region #reserves #resurce #mining #forecasting #nationalprojects #Russia
π3β€2β‘1π₯1π1π―1
We present the articles of the fourth issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
The purpose of this study is to assess dust concentration at the workplace of a crushing and screening plant operator as part of a special labor conditions evaluation. Dust concentration at the operator's workplace was measured using a standard gravimetric method. The testing was conducted in four stages and lasted 400 minutes, which is 83% of the total work shift duration. Data analysis revealed an exceedance of the permissible dust concentration by a factor of 1.28. The labor conditions class (subclass) was established as 3.1. It was found that the average dust concentrations varied by a factor of 3β4 across different testing stages due to the intensity and direction of air velocity at the production site. Based on the obtained data, dust concentrations at the workplace were predicted according to air velocity at the site, with an approximation accuracy of R2 = 0.95. The presented results can be used to predict dust concentrations at the workplaces of operators at other crushing and screening plants, taking into account individual empirical data collected at each site.
For more information, see the article:
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
#Inenglish #MST #production #crushed_stone #crushing_plant #dust #concentration #emissions #dustcontrol #dust_generation #operator #workingconditions #occupationalhazards #forecasting #workerprotection #mining #safety
The purpose of this study is to assess dust concentration at the workplace of a crushing and screening plant operator as part of a special labor conditions evaluation. Dust concentration at the operator's workplace was measured using a standard gravimetric method. The testing was conducted in four stages and lasted 400 minutes, which is 83% of the total work shift duration. Data analysis revealed an exceedance of the permissible dust concentration by a factor of 1.28. The labor conditions class (subclass) was established as 3.1. It was found that the average dust concentrations varied by a factor of 3β4 across different testing stages due to the intensity and direction of air velocity at the production site. Based on the obtained data, dust concentrations at the workplace were predicted according to air velocity at the site, with an approximation accuracy of R2 = 0.95. The presented results can be used to predict dust concentrations at the workplaces of operators at other crushing and screening plants, taking into account individual empirical data collected at each site.
For more information, see the article:
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
#Inenglish #MST #production #crushed_stone #crushing_plant #dust #concentration #emissions #dustcontrol #dust_generation #operator #workingconditions #occupationalhazards #forecasting #workerprotection #mining #safety
π3β€1π₯1π1π1
Can we extract gold from old mining waste? New research reveals potential
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits β long considered worthless β and found they could now be economically viable to process.
Key findings:
βοΈ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine β75 Β΅m fraction after grinding.
βοΈ Dominant minerals: quartz, muscovite, and kaoliniteβtypical of gold-quartz ore types.
βοΈ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
πΉ Heap leaching β the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70β80% gold recovery.
πΉ For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterdayβs waste could become tomorrowβs gold source β boosting profits while reducing environmental impact.
For more information, see the article:
π Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits β long considered worthless β and found they could now be economically viable to process.
Key findings:
βοΈ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine β75 Β΅m fraction after grinding.
βοΈ Dominant minerals: quartz, muscovite, and kaoliniteβtypical of gold-quartz ore types.
βοΈ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
πΉ Heap leaching β the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70β80% gold recovery.
πΉ For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterdayβs waste could become tomorrowβs gold source β boosting profits while reducing environmental impact.
For more information, see the article:
π Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
π3β€2β‘1π₯1π1
π₯ Coming soon: new issue of "Mining Science and Technology" Journal!
π In the coming days, you'll discover fresh research, innovative technologies, and the latest trends in the mining industry.
This issue features:
π Voznesenskii A. S., Ushakov E. I., Kutkin Ya. O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties.
π Shilova T. V., Serdyukov S. V., Drobchik A. N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds.
π Starikov A. N., Maltsev S. V., Sukhanov A. E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings.
π Chernyi K. Π., Faynburg G. Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity.
π Mirzaeva E. I., Isaeva N. F., Yalgashev E. Ya., Turdiyeva D. P., Boymonov R. M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater.
π Kotelnikova A. L., Zolotova E. S. Material composition of magnetic fractions of copper-smelting slag flotation tailings.
π Rakhutin M. G., Tran V. H., Krivenko A. V., Giang Q. Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator.
π Malafeev S. I., Malafeeva A. A., Konyashin V. I., Novgorodov A. A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels.
π Klyuev R. V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
π In the coming days, you'll discover fresh research, innovative technologies, and the latest trends in the mining industry.
This issue features:
π Voznesenskii A. S., Ushakov E. I., Kutkin Ya. O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties.
π Shilova T. V., Serdyukov S. V., Drobchik A. N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds.
π Starikov A. N., Maltsev S. V., Sukhanov A. E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings.
π Chernyi K. Π., Faynburg G. Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity.
π Mirzaeva E. I., Isaeva N. F., Yalgashev E. Ya., Turdiyeva D. P., Boymonov R. M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater.
π Kotelnikova A. L., Zolotova E. S. Material composition of magnetic fractions of copper-smelting slag flotation tailings.
π Rakhutin M. G., Tran V. H., Krivenko A. V., Giang Q. Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator.
π Malafeev S. I., Malafeeva A. A., Konyashin V. I., Novgorodov A. A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels.
π Klyuev R. V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
β€3π2π₯1π1π1π―1
A new issue of Mining Science and Technology has been published! π
Volume 1, 2025 of Mining Science and Technology is now available!
The complete table of contents can be accessed here:
π https://mst.misis.ru/jour/issue/view/42/showToc
Featured in this issue:
1οΈβ£ Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Full article
2οΈβ£ Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Full article
3οΈβ£ Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Full article
4οΈβ£ Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Full article
5οΈβ£ Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., et al. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Full article
6οΈβ£ Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Full article
7οΈβ£ Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
Full article
8οΈβ£ Malafeev S.I., Malafeeva A.A., Konyashin V.I., Novgorodov A.A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels. Mining Science and Technology (Russia). 2025;10(1):75-83. https://doi.org/10.17073/2500-0632-2024-05-262
Full article
9οΈβ£ Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84-94. https://doi.org/10.17073/2500-0632-2024-10-362
Full article
π All articles are freely available in open access!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
Volume 1, 2025 of Mining Science and Technology is now available!
The complete table of contents can be accessed here:
π https://mst.misis.ru/jour/issue/view/42/showToc
Featured in this issue:
1οΈβ£ Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Full article
2οΈβ£ Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Full article
3οΈβ£ Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Full article
4οΈβ£ Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Full article
5οΈβ£ Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., et al. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Full article
6οΈβ£ Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Full article
7οΈβ£ Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
Full article
8οΈβ£ Malafeev S.I., Malafeeva A.A., Konyashin V.I., Novgorodov A.A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels. Mining Science and Technology (Russia). 2025;10(1):75-83. https://doi.org/10.17073/2500-0632-2024-05-262
Full article
9οΈβ£ Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84-94. https://doi.org/10.17073/2500-0632-2024-10-362
Full article
π All articles are freely available in open access!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
π5β€2β‘1π₯1π1π1π―1
β Can the setback distance of a mine ventilation duct be increased without losing efficiency?
New research has proven: even with a 21-meter setback from the working face, the air jet maintains its effectiveness, fully ventilating the dead-end drift.
πΉ Key findings:
βοΈ Experiments conducted in an actual 29.2 mΒ² cross-section drift with five setback variants (10-21 m)
βοΈ 21.75 m/s jet velocity ensured proper ventilation even at maximum distance
βοΈ Results verified through computer modeling
βοΈ Derived equation correlates face velocity with drift geometry
πΉ Why it matters:
The discovery allows safely increasing duct setback to 20m for large cross-section drifts, simplifying mining operations.
For more information, see the article:
π Kamenskikh A.A., Faynburg G.Z., Semin M.A., Tatsiy A.V. Experimental study on forced ventilation in dead-end mine working with various setbacks of the ventilation pipeline from the working face. Mining Science and Technology (Russia). 2024;9(1):41-52. https://doi.org/10.17073/2500-0632-2023-08-147
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #MineVentilation #DeadEndFace #ForcedVentilation #VentilationDuctSetback #FieldExperiment #NumericalSimulation #AirflowPatterns #MiningTechnology #MiningSafety #Mining #Ventilation #Safety #DeadEnd #Airflow #FieldStudy #NumericalModeling #JetFlow #Turbulence #MineSafety #ForcedVentilation #Pipeline #CrossSection #Velocity #Vortex #StagnantZone #ANSYS #CFD #Regulations #Research #Engineering
New research has proven: even with a 21-meter setback from the working face, the air jet maintains its effectiveness, fully ventilating the dead-end drift.
πΉ Key findings:
βοΈ Experiments conducted in an actual 29.2 mΒ² cross-section drift with five setback variants (10-21 m)
βοΈ 21.75 m/s jet velocity ensured proper ventilation even at maximum distance
βοΈ Results verified through computer modeling
βοΈ Derived equation correlates face velocity with drift geometry
πΉ Why it matters:
The discovery allows safely increasing duct setback to 20m for large cross-section drifts, simplifying mining operations.
For more information, see the article:
π Kamenskikh A.A., Faynburg G.Z., Semin M.A., Tatsiy A.V. Experimental study on forced ventilation in dead-end mine working with various setbacks of the ventilation pipeline from the working face. Mining Science and Technology (Russia). 2024;9(1):41-52. https://doi.org/10.17073/2500-0632-2023-08-147
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #MineVentilation #DeadEndFace #ForcedVentilation #VentilationDuctSetback #FieldExperiment #NumericalSimulation #AirflowPatterns #MiningTechnology #MiningSafety #Mining #Ventilation #Safety #DeadEnd #Airflow #FieldStudy #NumericalModeling #JetFlow #Turbulence #MineSafety #ForcedVentilation #Pipeline #CrossSection #Velocity #Vortex #StagnantZone #ANSYS #CFD #Regulations #Research #Engineering
π3β€1β‘1π₯1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
π2β‘1β€1π1π1π―1
How to Optimize Ventilation in Mines Using Diesel Equipment?
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
π5β€1β‘1π₯1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
β€1π1π₯1π1π1
How to improve mine planning efficiency by 20 times?
π Breakthrough in mining: scientists have developed an innovative approach for open-pit mineral deposit planning!
π‘ Core Technology:
A hybrid algorithm combining:
β Parametric analysis of pit limits;
β Integer programming;
β Strategic decision variable fixation.
π Key Advantages:
βοΈ 95% faster calculations (from 8 hours β 24 minutes!);
βοΈ Handles complex deposits with millions of blocks;
βοΈ Generates alternative extraction scenarios;
βοΈ Maintains 97-99% economic efficiency.
π Practical Applications:
β’ Large-scale open pits;
β’ Deposits with challenging geology;
β’ Rapid plan adjustments to market changes.
For more information, see the article:
π Hasozdemir K., ErΓ§elebi S. Enhancing the performance of integer models for addressing the long-term production planning problem in open pit mines by decision variable fixation based on parametric analysis of the final pit limit. Mining Science and Technology (Russia). 2024;9(2):74-84. https://doi.org/10.17073/2500-0632-2023-09-156
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #Mining #Optimization #OpenPit #IntegerProgramming #MiningTech #Innovation #Geology #ResourceManagement #Efficiency #Algorithms #DigitalMining #AI #SustainableMining #DataScience #IndustrialOptimization
π Breakthrough in mining: scientists have developed an innovative approach for open-pit mineral deposit planning!
π‘ Core Technology:
A hybrid algorithm combining:
β Parametric analysis of pit limits;
β Integer programming;
β Strategic decision variable fixation.
π Key Advantages:
βοΈ 95% faster calculations (from 8 hours β 24 minutes!);
βοΈ Handles complex deposits with millions of blocks;
βοΈ Generates alternative extraction scenarios;
βοΈ Maintains 97-99% economic efficiency.
π Practical Applications:
β’ Large-scale open pits;
β’ Deposits with challenging geology;
β’ Rapid plan adjustments to market changes.
For more information, see the article:
π Hasozdemir K., ErΓ§elebi S. Enhancing the performance of integer models for addressing the long-term production planning problem in open pit mines by decision variable fixation based on parametric analysis of the final pit limit. Mining Science and Technology (Russia). 2024;9(2):74-84. https://doi.org/10.17073/2500-0632-2023-09-156
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #Mining #Optimization #OpenPit #IntegerProgramming #MiningTech #Innovation #Geology #ResourceManagement #Efficiency #Algorithms #DigitalMining #AI #SustainableMining #DataScience #IndustrialOptimization
β€1π1π₯1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
π3β‘1β€1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as CuΒ²βΊ, ZnΒ²βΊ, and FeΒ²βΊ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic NaβΊ cations into the environment. The novelty of the method lies in using waste AlβOββNaAlOβ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L CuΒ²βΊ, 180 mg/L ZnΒ²βΊ, and 125 mg/L FeΒ²βΊ. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
π Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as CuΒ²βΊ, ZnΒ²βΊ, and FeΒ²βΊ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic NaβΊ cations into the environment. The novelty of the method lies in using waste AlβOββNaAlOβ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L CuΒ²βΊ, 180 mg/L ZnΒ²βΊ, and 125 mg/L FeΒ²βΊ. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
π Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
β€2β‘1π1π₯1π1
π·πΊ Mining Science and Technology (Russia) π·πΊ
ISSN: 2500-0632 (online)
Founder: University of Science and Technology MISIS (Moscow)
2024 Journal Impact Metrics (2025 Update)
π₯ CiteScore 2024: 4.2
π₯ SJR 2024: 0.634
π₯ SNIP 2024: 1.040
Quartiles:
π Scopus: Q2
π Scimago: Q2
π SNIP: Q2
Indexation:
βοΈ Scopus
βοΈ Engineering Village
βοΈ Scimago Journal & Country Rank (SJR)
βοΈChemical Abstracts Service (CAS)
βοΈGeoRef
βοΈetc.
Activities of the "Mining Science and Technology (Russia)" international journal are aimed at developing international scientific and professional cooperation in the field of mining. The journal seeks to develop interdisciplinary areas that contribute to progress in mining, for example, technological and environmental safety, project organization and management in mining industry, development of territories, legal aspects of natural resource use, and other areas studied by researchers and practitioners.
Publication of research articles in the journal is free, except for cases when the article is prepared within the framework of research that was financially supported by Russian or foreign organizations. In such cases, appropriate indication of the funding source must be made in the article.
Reviewing: double blind.
We are on the Internet:
web-site: π https://mst.misis.ru/jour π
Telegram channel: π t.iss.one/MinSciTech π
VK community: π https://vk.com/mst.misis π
#inenglish #MST #information #mineral_resources #geology #mineral #deposits #mining_rock #rock_mechanics #rock_geophysics #beneficiation #surveying #safety #environmental_protection #construction #underground_space #power_engineering #automation #open_pit #blasting #drilling #underground #ore #Ρoal #oil #gas #mining_machinery #exploration #mining_projects #mining_education
ISSN: 2500-0632 (online)
Founder: University of Science and Technology MISIS (Moscow)
2024 Journal Impact Metrics (2025 Update)
π₯ CiteScore 2024: 4.2
π₯ SJR 2024: 0.634
π₯ SNIP 2024: 1.040
Quartiles:
π Scopus: Q2
π Scimago: Q2
π SNIP: Q2
Indexation:
βοΈ Scopus
βοΈ Engineering Village
βοΈ Scimago Journal & Country Rank (SJR)
βοΈChemical Abstracts Service (CAS)
βοΈGeoRef
βοΈetc.
Activities of the "Mining Science and Technology (Russia)" international journal are aimed at developing international scientific and professional cooperation in the field of mining. The journal seeks to develop interdisciplinary areas that contribute to progress in mining, for example, technological and environmental safety, project organization and management in mining industry, development of territories, legal aspects of natural resource use, and other areas studied by researchers and practitioners.
Publication of research articles in the journal is free, except for cases when the article is prepared within the framework of research that was financially supported by Russian or foreign organizations. In such cases, appropriate indication of the funding source must be made in the article.
Reviewing: double blind.
We are on the Internet:
web-site: π https://mst.misis.ru/jour π
Telegram channel: π t.iss.one/MinSciTech π
VK community: π https://vk.com/mst.misis π
#inenglish #MST #information #mineral_resources #geology #mineral #deposits #mining_rock #rock_mechanics #rock_geophysics #beneficiation #surveying #safety #environmental_protection #construction #underground_space #power_engineering #automation #open_pit #blasting #drilling #underground #ore #Ρoal #oil #gas #mining_machinery #exploration #mining_projects #mining_education
π2π₯°2β€1β‘1π₯1π1π―1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists studied the effect of hydraulic excavator pump wear on fuel overconsumption. During operation, increased clearances, reduced volumetric efficiency, and higher energy losses lead to excessive fuel consumption. The research aimed to determine the optimal pump service life considering growing fuel costs. The team developed a mathematical model of pump ownership costs, created simulation algorithms in Simulink-Matlab, and evaluated fuel consumption increases. Using the Komatsu PC2000-8 excavator as an example, the study demonstrated how main hydraulic pumps' technical condition affects fuel overconsumption. The results established correlations between fuel overconsumption and pump wear, plus derived an equation for optimal replacement timing to minimize total costs. The proposed fuel overconsumption indicator (calculated as the ratio between actual and nominal fuel consumption per 1 mΒ³ of excavated material) enables data-driven determination of pumps' critical wear threshold. Implementation of this model can reduce combined pump ownership and fuel costs by up to 17%, accounting for pump condition deterioration rate, fuel prices, replacement costs, and mining-engineering conditions. All simulations were performed using Simulink-Matlab and Excel with specially developed calculation methodologies.
For more information, see the article:
π Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningMachinery #HydraulicMiningExcavator #PumpTechnicalCondition #Hydraulics #Pump #Condition #Operation #Modeling #Leakage #Efficiency #Wear #Costs #Algorithm #Consumption #Overconsumption #OptimalServiceLife #Excavator #Pumps #ServiceLife #TechnicalCondition #Mining
Scientists studied the effect of hydraulic excavator pump wear on fuel overconsumption. During operation, increased clearances, reduced volumetric efficiency, and higher energy losses lead to excessive fuel consumption. The research aimed to determine the optimal pump service life considering growing fuel costs. The team developed a mathematical model of pump ownership costs, created simulation algorithms in Simulink-Matlab, and evaluated fuel consumption increases. Using the Komatsu PC2000-8 excavator as an example, the study demonstrated how main hydraulic pumps' technical condition affects fuel overconsumption. The results established correlations between fuel overconsumption and pump wear, plus derived an equation for optimal replacement timing to minimize total costs. The proposed fuel overconsumption indicator (calculated as the ratio between actual and nominal fuel consumption per 1 mΒ³ of excavated material) enables data-driven determination of pumps' critical wear threshold. Implementation of this model can reduce combined pump ownership and fuel costs by up to 17%, accounting for pump condition deterioration rate, fuel prices, replacement costs, and mining-engineering conditions. All simulations were performed using Simulink-Matlab and Excel with specially developed calculation methodologies.
For more information, see the article:
π Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningMachinery #HydraulicMiningExcavator #PumpTechnicalCondition #Hydraulics #Pump #Condition #Operation #Modeling #Leakage #Efficiency #Wear #Costs #Algorithm #Consumption #Overconsumption #OptimalServiceLife #Excavator #Pumps #ServiceLife #TechnicalCondition #Mining
π2β€1π₯1π1π1
How to increase diamond recovery using froth separation?
A new study reveals innovative methods to improve the efficiency of froth separation for diamond-bearing kimberlites. Researchers have proposed solutions that could reduce diamond losses by up to 20%!
πΉ Key Findings:
1. Restoring diamond hydrophobicity by removing mineral coatings through combined treatment: thermal, ultrasonic, electrochemical, and reagent conditioning.
2. Optimal temperature regime:
- heating the feed to 85β90Β°C for preparation;
- conditioning at 30β40Β°C;
- separation at 20β24Β°C.
3. Collector optimization:
- adding low- and medium-molecular fractions increases collector efficiency by 16%;
- ketone additives enhance adhesion activity up to 87%.
4. Closed-loop water recycling with clarification reduces reagent consumption by 8% without compromising concentrate quality.
π Read the full article:
Morozov V.V., Kovalenko E.G., Dvoychenkova G.P., Pestryak I.V., Lezova S.P. Current trends of improving the efficiency of froth separation of diamond-bearing kimberlites. Mining Science and Technology (Russia). 2024;9(2):134-145. https://doi.org/10.17073/2500-0632-2023-07-136
π¬ Which mineral processing technologies do you find most promising? Share your thoughts in the comments!
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningScience #Diamonds #Kimberlites #Coatings #Conditioning #Hydrophobization #Collector #FrothSeparation #Flotation #WaterRecycling #Recycling #Mining #Innovation #Technology
A new study reveals innovative methods to improve the efficiency of froth separation for diamond-bearing kimberlites. Researchers have proposed solutions that could reduce diamond losses by up to 20%!
πΉ Key Findings:
1. Restoring diamond hydrophobicity by removing mineral coatings through combined treatment: thermal, ultrasonic, electrochemical, and reagent conditioning.
2. Optimal temperature regime:
- heating the feed to 85β90Β°C for preparation;
- conditioning at 30β40Β°C;
- separation at 20β24Β°C.
3. Collector optimization:
- adding low- and medium-molecular fractions increases collector efficiency by 16%;
- ketone additives enhance adhesion activity up to 87%.
4. Closed-loop water recycling with clarification reduces reagent consumption by 8% without compromising concentrate quality.
π Read the full article:
Morozov V.V., Kovalenko E.G., Dvoychenkova G.P., Pestryak I.V., Lezova S.P. Current trends of improving the efficiency of froth separation of diamond-bearing kimberlites. Mining Science and Technology (Russia). 2024;9(2):134-145. https://doi.org/10.17073/2500-0632-2023-07-136
π¬ Which mineral processing technologies do you find most promising? Share your thoughts in the comments!
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningScience #Diamonds #Kimberlites #Coatings #Conditioning #Hydrophobization #Collector #FrothSeparation #Flotation #WaterRecycling #Recycling #Mining #Innovation #Technology
π4β‘1β€1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technology" (Russia) for 2025:
Scientists have analyzed energy efficiency of mining operations, focusing on ventilation fans and hoisting machines as the most energy-intensive equipment. The study examines main ventilation fans and hoisting systems at Molibden mine, proposing optimization measures to improve efficiency and reduce costs. Research methods included analytical approaches for ventilation system evaluation. Findings show inefficient fan operation with excessive energy use, suggesting motor replacement could save 4.9 million rubles annually. Analysis of hoisting equipment recommends modern multi-rope systems for better performance. Data reveals inverse correlation between productivity and energy use - 10β15% output increase reduces energy consumption by 2β5%. Implementing automated controls and optimizing equipment utilization can significantly enhance efficiency. These results are applicable to other deep mining operations.
For more information, see the article:
π Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84β94. https://doi.org/10.17073/2500-0632-2024-10-362
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #Mine #EnergyEfficiency #Ventilation #Hoisting #Motor #Ore #EnergyConsumption #Economics #Mining #Productivity #Automation #DeepMining #Optimization #Systems
Scientists have analyzed energy efficiency of mining operations, focusing on ventilation fans and hoisting machines as the most energy-intensive equipment. The study examines main ventilation fans and hoisting systems at Molibden mine, proposing optimization measures to improve efficiency and reduce costs. Research methods included analytical approaches for ventilation system evaluation. Findings show inefficient fan operation with excessive energy use, suggesting motor replacement could save 4.9 million rubles annually. Analysis of hoisting equipment recommends modern multi-rope systems for better performance. Data reveals inverse correlation between productivity and energy use - 10β15% output increase reduces energy consumption by 2β5%. Implementing automated controls and optimizing equipment utilization can significantly enhance efficiency. These results are applicable to other deep mining operations.
For more information, see the article:
π Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84β94. https://doi.org/10.17073/2500-0632-2024-10-362
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #Mine #EnergyEfficiency #Ventilation #Hoisting #Motor #Ore #EnergyConsumption #Economics #Mining #Productivity #Automation #DeepMining #Optimization #Systems
π4π1π1π―1
π Dry vs wet: unexpected results for Arkachan gold ore
Comparison Methods:
βοΈ Dry Processing: Crushing (DKD-300) + Grinding (TsMVU-800) + Pneumatic Separation (POS-2000)
βοΈ Wet Processing: Gravity Separation with GRG Test (ITOMAK-0.1)
π Key Data:
Gold Distribution:
βοΈ 27.35% in -0.2+0.1 mm class;
βοΈ 11.75% in -0.1+0.071 mm class;
βοΈ 23.46% in -0.071 mm class;
β Total 62.56% in particles <0.2 mm
Method Efficiency:
βοΈ pneumatic Separation: 35.25% recovery at 1.8 t/h;
βοΈ GRG Test: 73.91% recovery with grinding to 80% passing 0.071 mm.
GRG Test Results by Stage:
βοΈ Stage 1 (-1 mm): 40.20% recovery;
βοΈ Stage 2 (-0.315 mm): +14.46%;
βοΈ Stage 3 (-0.071 mm): +20.88%.
Conclusions:
1. Dry methods are ineffective for fine-grained gold (<100 Β΅m).
2. Gravity separation requires fine grinding but achieves high recovery.
3. Major losses are due to incomplete liberation of gold in pyrite.
π Full Article:
Matveev Π.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
π Subscribe: @MinSciTech
π¬ What modern methods could improve dry processing for such ores?
#InEnglish #MST #Mining #Gold #Beneficiation #Crusher #Mill #Separator #DryProcessing #ParticleSize #Pyrite #Sample #Ore #Test #Method #Analysis #Stage #Class #Gravity #FineGrained #Particles #Concentrate #Grinding #Efficiency #Crushing #Recovery #Flowchart #Cycle #Fraction #Balance #Parameter #Mode #Degree #Impact #Abrasion #Subsample #Sludge #Pulp #SizeFraction #Feed #Tailings #Losses #Product #Intergrowths
P.S. For ores with fine-grained gold, classical gravity remains optimal. Are there alternatives?
Comparison Methods:
βοΈ Dry Processing: Crushing (DKD-300) + Grinding (TsMVU-800) + Pneumatic Separation (POS-2000)
βοΈ Wet Processing: Gravity Separation with GRG Test (ITOMAK-0.1)
π Key Data:
Gold Distribution:
βοΈ 27.35% in -0.2+0.1 mm class;
βοΈ 11.75% in -0.1+0.071 mm class;
βοΈ 23.46% in -0.071 mm class;
β Total 62.56% in particles <0.2 mm
Method Efficiency:
βοΈ pneumatic Separation: 35.25% recovery at 1.8 t/h;
βοΈ GRG Test: 73.91% recovery with grinding to 80% passing 0.071 mm.
GRG Test Results by Stage:
βοΈ Stage 1 (-1 mm): 40.20% recovery;
βοΈ Stage 2 (-0.315 mm): +14.46%;
βοΈ Stage 3 (-0.071 mm): +20.88%.
Conclusions:
1. Dry methods are ineffective for fine-grained gold (<100 Β΅m).
2. Gravity separation requires fine grinding but achieves high recovery.
3. Major losses are due to incomplete liberation of gold in pyrite.
π Full Article:
Matveev Π.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
π Subscribe: @MinSciTech
π¬ What modern methods could improve dry processing for such ores?
#InEnglish #MST #Mining #Gold #Beneficiation #Crusher #Mill #Separator #DryProcessing #ParticleSize #Pyrite #Sample #Ore #Test #Method #Analysis #Stage #Class #Gravity #FineGrained #Particles #Concentrate #Grinding #Efficiency #Crushing #Recovery #Flowchart #Cycle #Fraction #Balance #Parameter #Mode #Degree #Impact #Abrasion #Subsample #Sludge #Pulp #SizeFraction #Feed #Tailings #Losses #Product #Intergrowths
P.S. For ores with fine-grained gold, classical gravity remains optimal. Are there alternatives?
π4β€2π₯1π1π―1
We present the articles of the second issue of scientific journal "Mining Science and Technology" (Russia) for 2025:
Scientists have proposed a new approach to calculating the optimal width of a dredge front bank, which reduces the cost of placer deposit mining. The study demonstrates that existing methods, focused solely on maximizing dredge productivity, fail to minimize costs when the depth of the placer and overburden thickness increase. The authors developed a methodology for determining the front bank width that accounts not only for dredge performance but also for stripping costs and the extraction of valuable components. The research analyzed the influence of placer parameters (peat thickness, productive layer thickness, front bank width) on economic efficiency, evaluated over 100 process flow sheets for equipment operation, and provided their economic assessment. The results include recommended correction factors for calculating the optimal front bank width, serving as a methodological foundation for designing dredge mining systems.
For details, see the article in Mining Science and Technology:
π Talgamer B.L., Meshkov I.A., Murzin N.V., Roslavtseva Yu.G. Justification of the optimal width of a front bank. Mining Science and Technology (Russia). 2025;10(2):99-108. https://doi.org/10.17073/2500-0632-2024-11-332
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#inEnglish #MST #placerdeposits #dredging #frontbankwidth #stripping #miningcosts #extraction #mining #dredge #peat #sands #optimization #technology #economics #science #research #methodology #coefficients #miningequipment
Scientists have proposed a new approach to calculating the optimal width of a dredge front bank, which reduces the cost of placer deposit mining. The study demonstrates that existing methods, focused solely on maximizing dredge productivity, fail to minimize costs when the depth of the placer and overburden thickness increase. The authors developed a methodology for determining the front bank width that accounts not only for dredge performance but also for stripping costs and the extraction of valuable components. The research analyzed the influence of placer parameters (peat thickness, productive layer thickness, front bank width) on economic efficiency, evaluated over 100 process flow sheets for equipment operation, and provided their economic assessment. The results include recommended correction factors for calculating the optimal front bank width, serving as a methodological foundation for designing dredge mining systems.
For details, see the article in Mining Science and Technology:
π Talgamer B.L., Meshkov I.A., Murzin N.V., Roslavtseva Yu.G. Justification of the optimal width of a front bank. Mining Science and Technology (Russia). 2025;10(2):99-108. https://doi.org/10.17073/2500-0632-2024-11-332
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#inEnglish #MST #placerdeposits #dredging #frontbankwidth #stripping #miningcosts #extraction #mining #dredge #peat #sands #optimization #technology #economics #science #research #methodology #coefficients #miningequipment
β€3π1π₯1π1π1π―1