How to control the gas hazard pattern in underground workings after blasting?
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
π Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
π Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
π3β€1π₯1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
β€1π1π₯1π1π1