Mining Science and Technology (Russia)
2.43K subscribers
334 photos
2 videos
1 file
318 links
Activities of the "Mining Science and Technology (Russia)" international journal are aimed at developing international scientific and professional cooperation in the field of mining. Scopus,CAS,GeoRef,Engineering Village,SJR, DOAJ (mst.misis.ru)
Download Telegram
What determines the stability of embankment and separating dams?

The stability of the embankment and separating dams of a TSF is determined by a complex of geotechnical, hydrogeological, and anthropogenic factors. The following have the greatest influence: physical and mechanical characteristics of soils and tailings (wastes); the process of construction and operation of a structure; nature of its base; hydrodynamic, hydrostatic, seismic, and dynamic forces. A structure option of the dam body at this specific section, developed on the basis of the simulation, provided a factor of safety values for the outer slope at well no. 324-19. This was FoS = 1.664 for the main combination of loads, and FoS = 1.430 for a special combination of loads under seismic action.

For more information, see the article in the journal of Mining Science and Technology (Russia):

πŸ“Œ Bessimbayeva О.G., Khmyrova E.N., Oleinikova E.A., Kasymzhanova A.E. Simulation of ash dump embankment stability. Mining Science and Technology (Russia). 2023;8(4):303-312. https://doi.org/10.17073/2500-0632-2022-11-30

Subscribe to the journal's Telegram channel:
πŸ‘‰ t.iss.one/MinSciTech πŸ‘ˆ

#inenglish #MST #ash_dump #embankment #structure #slopes #stability #simulation #soil #finite_element_method #load #factor_of_safety #drawdown_curve #head_gradient
πŸ‘5❀1πŸ”₯1πŸ‘1πŸ™1
Dear Colleagues!

The issue (No. 4, 2024) of the Mining Science and Technology (Russia) journal has been published on our website.

πŸ”₯Hurry to read!πŸ”₯

In the new issue:

πŸ“Œ Al-Dujaili A.N. New advances in drilling operations in sandstone, shale, and carbonate formations: a case study of five giant fields in the Mesopotamia Basin, Iraq. Mining Science and Technology (Russia). 2024;9(4):308-327. https://doi.org/10.17073/2500-0632-2023-08-146
πŸ“Œ Bagdasarau M.A., Mayevskaya A.N., Petrov D.O., Sheshko N.N. GIS modeling of a Cenozoic strata structure in Brest region for forecasting and evaluation of non-metallic deposits. Mining Science and Technology (Russia). 2024;9(4):328-340. https://doi.org/10.17073/2500-0632-2024-03-230
πŸ“Œ Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217
πŸ“Œ Boyarko G.Yu., Lapteva A.M., Bolsunovskaya L.M. Mineral resource base of Russia’s copper: current state and development prospects. Mining Science and Technology (Russia). 2024;9(4):352-386. https://doi.org/10.17073/2500-0632-2024-05-248
πŸ“Œ Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387-394. https://doi.org/10.17073/2500-0632-2023-09-160
πŸ“Œ Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
πŸ“Œ Mitrakova N.V., Khayrulina E.A., Perevoshchikova A.A., Poroshina N.V., Malyshkina E.E., Yakovleva E.S., Kobelev N.A. Chemical and ecological properties of soils and the NDVI analysis on reclaimed sulfide coal waste dumps in the boreal zone. Mining Science and Technology (Russia). 2024;9(4):406-419. https://doi.org/10.17073/2500-0632-2024-04-206
πŸ“Œ Borisenko V.F., Sidorov V.A., Sushko A.E., Rybakov V.N. Vibration metrics for informational support in assessing the technical condition of ball mills. Mining Science and Technology (Russia). 2024;9(4):420-432. https://doi.org/10.17073/2500-0632-2023-10-175

Subscribe to the journal's Telegram channel:
πŸ‘‰t.iss.one/MinSciTechπŸ‘ˆ

#inenglish #MST #issue #hydrocarbons #field #reserves #basin #formation #extraction #drilling #well #productivity #solution #accident #reservoir #bit #control #Iraq #geology #Cenozoic #forecast #GIS #ArcGIS #evaluation #Brest #energy #efficiency #exploration #well #CaspianSea #copper #ore #deposit #mining #Russia #mine #rock #hazard #Lovozero #Karnasurt #production, #crushedstone, #dust, #concentration #emissions #harm #protection #coal #dump #waste #reclamation #lithostrat #soil #NDVI #embryonic #mill #electricdrive #electricengine #shaft #bearing #operation #damage #failures #control #diagnostics #vibration #signal #frequency #analysis #correlation
❀2πŸ‘2⚑1πŸ‘1πŸ™1
What are the environmental consequences of mining operations in Arctic regions?

The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.

For more information, see the article:

πŸ“Œ Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188

Subscribe to the journal's Telegram channel:
πŸ‘‰t.iss.one/MinSciTechπŸ‘ˆ

#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
πŸ‘4❀1πŸ”₯1πŸ‘1πŸ™1
We present the articles of the fourth issue of scientific journal "Mining Science and Technology” (Russia) for 2024:

The problem of biological reclamation was studied in the Kizel Coal Basin area. The effectiveness of reclamation was evaluated on several sulfide coal waste dumps. The reclamation methods, as well as the period of soil-vegetation cover formation, varied. Agrochemical properties of the dump soils were studied using unified methods. The NDVI (Normalized Difference Vegetation Index) was calculated based on Sentinel-2 and Landsat 7,8 images. To assess biological activity, phytotesting was used. The lithostrats ranged from slightly acidic to neutral (рН–Н2О = 6.1–6.8); the embryonic soil showed a slightly alkaline reaction (7.9). The embryonic soil, due to the presence of coal particles, had the highest organic matter content (12–7.7%). Depending on the "age" of the soil, the amount of organic matter in the lithostrats varied: for the 7-year-old lithostrat, it ranged from 2.4 to 8.9%, while for the 4-year-old lithostrat, it was less than 1%. The absorption capacity of the lithostrats was similar to that of the background soil. The dump soils were characterized by low levels of nutrients (NPK), with the 4-year-old lithostrat having the lowest N content. The dump soils demonstrated favorable conditions for plant growth, as evidenced by the height and biomass of cress and oats. The calculated NDVI for all dumps ranged from 0.4 to 0.6, indicating the presence of a stable vegetation cover. The implemented reclamation measures proved to be effective.

For more information, see the article:

πŸ“Œ Mitrakova N.V., Khayrulina E.A., Perevoshchikova A.A., et al. Chemical and ecological properties of soils and the NDVI analysis on reclaimed sulfide coal waste dumps in the boreal zone. Mining Science and Technology (Russia). 2024;9(4):406-419. https://doi.org/10.17073/2500-0632-2024-04-206

Subscribe to the journal's Telegram channel:
πŸ‘‰t.iss.one/MinSciTechπŸ‘ˆ

#Inenglish #MST #coal #dump #waste #reclamation #soilformation #lithostrat #soil #NDVIindex #embryonic_soil #pH
πŸ‘2❀1⚑1πŸ”₯1πŸ‘1πŸ€”1
We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:

Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.

For more information, see the article:

πŸ“Œ Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303


Subscribe to our Telegram channel:
πŸ‘‰ t.iss.one/MinSciTech πŸ‘ˆ

#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
❀3πŸ‘1πŸ”₯1πŸ‘1πŸ™1