Dear Colleagues!
The issue (No. 4, 2024) of the Mining Science and Technology (Russia) journal has been published on our website.
π₯Hurry to read!π₯
In the new issue:
π Al-Dujaili A.N. New advances in drilling operations in sandstone, shale, and carbonate formations: a case study of five giant fields in the Mesopotamia Basin, Iraq. Mining Science and Technology (Russia). 2024;9(4):308-327. https://doi.org/10.17073/2500-0632-2023-08-146
π Bagdasarau M.A., Mayevskaya A.N., Petrov D.O., Sheshko N.N. GIS modeling of a Cenozoic strata structure in Brest region for forecasting and evaluation of non-metallic deposits. Mining Science and Technology (Russia). 2024;9(4):328-340. https://doi.org/10.17073/2500-0632-2024-03-230
π Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217
π Boyarko G.Yu., Lapteva A.M., Bolsunovskaya L.M. Mineral resource base of Russiaβs copper: current state and development prospects. Mining Science and Technology (Russia). 2024;9(4):352-386. https://doi.org/10.17073/2500-0632-2024-05-248
π Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387-394. https://doi.org/10.17073/2500-0632-2023-09-160
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
π Mitrakova N.V., Khayrulina E.A., Perevoshchikova A.A., Poroshina N.V., Malyshkina E.E., Yakovleva E.S., Kobelev N.A. Chemical and ecological properties of soils and the NDVI analysis on reclaimed sulfide coal waste dumps in the boreal zone. Mining Science and Technology (Russia). 2024;9(4):406-419. https://doi.org/10.17073/2500-0632-2024-04-206
π Borisenko V.F., Sidorov V.A., Sushko A.E., Rybakov V.N. Vibration metrics for informational support in assessing the technical condition of ball mills. Mining Science and Technology (Russia). 2024;9(4):420-432. https://doi.org/10.17073/2500-0632-2023-10-175
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #issue #hydrocarbons #field #reserves #basin #formation #extraction #drilling #well #productivity #solution #accident #reservoir #bit #control #Iraq #geology #Cenozoic #forecast #GIS #ArcGIS #evaluation #Brest #energy #efficiency #exploration #well #CaspianSea #copper #ore #deposit #mining #Russia #mine #rock #hazard #Lovozero #Karnasurt #production, #crushedstone, #dust, #concentration #emissions #harm #protection #coal #dump #waste #reclamation #lithostrat #soil #NDVI #embryonic #mill #electricdrive #electricengine #shaft #bearing #operation #damage #failures #control #diagnostics #vibration #signal #frequency #analysis #correlation
The issue (No. 4, 2024) of the Mining Science and Technology (Russia) journal has been published on our website.
π₯Hurry to read!π₯
In the new issue:
π Al-Dujaili A.N. New advances in drilling operations in sandstone, shale, and carbonate formations: a case study of five giant fields in the Mesopotamia Basin, Iraq. Mining Science and Technology (Russia). 2024;9(4):308-327. https://doi.org/10.17073/2500-0632-2023-08-146
π Bagdasarau M.A., Mayevskaya A.N., Petrov D.O., Sheshko N.N. GIS modeling of a Cenozoic strata structure in Brest region for forecasting and evaluation of non-metallic deposits. Mining Science and Technology (Russia). 2024;9(4):328-340. https://doi.org/10.17073/2500-0632-2024-03-230
π Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217
π Boyarko G.Yu., Lapteva A.M., Bolsunovskaya L.M. Mineral resource base of Russiaβs copper: current state and development prospects. Mining Science and Technology (Russia). 2024;9(4):352-386. https://doi.org/10.17073/2500-0632-2024-05-248
π Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387-394. https://doi.org/10.17073/2500-0632-2023-09-160
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
π Mitrakova N.V., Khayrulina E.A., Perevoshchikova A.A., Poroshina N.V., Malyshkina E.E., Yakovleva E.S., Kobelev N.A. Chemical and ecological properties of soils and the NDVI analysis on reclaimed sulfide coal waste dumps in the boreal zone. Mining Science and Technology (Russia). 2024;9(4):406-419. https://doi.org/10.17073/2500-0632-2024-04-206
π Borisenko V.F., Sidorov V.A., Sushko A.E., Rybakov V.N. Vibration metrics for informational support in assessing the technical condition of ball mills. Mining Science and Technology (Russia). 2024;9(4):420-432. https://doi.org/10.17073/2500-0632-2023-10-175
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #issue #hydrocarbons #field #reserves #basin #formation #extraction #drilling #well #productivity #solution #accident #reservoir #bit #control #Iraq #geology #Cenozoic #forecast #GIS #ArcGIS #evaluation #Brest #energy #efficiency #exploration #well #CaspianSea #copper #ore #deposit #mining #Russia #mine #rock #hazard #Lovozero #Karnasurt #production, #crushedstone, #dust, #concentration #emissions #harm #protection #coal #dump #waste #reclamation #lithostrat #soil #NDVI #embryonic #mill #electricdrive #electricengine #shaft #bearing #operation #damage #failures #control #diagnostics #vibration #signal #frequency #analysis #correlation
mst.misis.ru
Vol 9, No 4 (2024)
Peer-rewieved journal
β€2π2β‘1π1π1
How to control the gas hazard pattern in underground workings after blasting?
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
π Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
π Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
π3β€1π₯1π1π1
We present the articles of the fourth issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
The purpose of this study is to assess dust concentration at the workplace of a crushing and screening plant operator as part of a special labor conditions evaluation. Dust concentration at the operator's workplace was measured using a standard gravimetric method. The testing was conducted in four stages and lasted 400 minutes, which is 83% of the total work shift duration. Data analysis revealed an exceedance of the permissible dust concentration by a factor of 1.28. The labor conditions class (subclass) was established as 3.1. It was found that the average dust concentrations varied by a factor of 3β4 across different testing stages due to the intensity and direction of air velocity at the production site. Based on the obtained data, dust concentrations at the workplace were predicted according to air velocity at the site, with an approximation accuracy of R2 = 0.95. The presented results can be used to predict dust concentrations at the workplaces of operators at other crushing and screening plants, taking into account individual empirical data collected at each site.
For more information, see the article:
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
#Inenglish #MST #production #crushed_stone #crushing_plant #dust #concentration #emissions #dustcontrol #dust_generation #operator #workingconditions #occupationalhazards #forecasting #workerprotection #mining #safety
The purpose of this study is to assess dust concentration at the workplace of a crushing and screening plant operator as part of a special labor conditions evaluation. Dust concentration at the operator's workplace was measured using a standard gravimetric method. The testing was conducted in four stages and lasted 400 minutes, which is 83% of the total work shift duration. Data analysis revealed an exceedance of the permissible dust concentration by a factor of 1.28. The labor conditions class (subclass) was established as 3.1. It was found that the average dust concentrations varied by a factor of 3β4 across different testing stages due to the intensity and direction of air velocity at the production site. Based on the obtained data, dust concentrations at the workplace were predicted according to air velocity at the site, with an approximation accuracy of R2 = 0.95. The presented results can be used to predict dust concentrations at the workplaces of operators at other crushing and screening plants, taking into account individual empirical data collected at each site.
For more information, see the article:
π Korol E.A., Degaev E.N., Konyukhov D.S. Assessing dust concentration at the workplace of a crushing and screening plant operator for special labor conditions evaluation. Mining Science and Technology (Russia). 2024;9(4):395-405. https://doi.org/10.17073/2500-0632-2024-03-235
#Inenglish #MST #production #crushed_stone #crushing_plant #dust #concentration #emissions #dustcontrol #dust_generation #operator #workingconditions #occupationalhazards #forecasting #workerprotection #mining #safety
π3β€1π₯1π1π1
How to Optimize Ventilation in Mines Using Diesel Equipment?
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
π5β€1β‘1π₯1π1