Mining Science and Technology (Russia)
2.43K subscribers
334 photos
2 videos
1 file
318 links
Activities of the "Mining Science and Technology (Russia)" international journal are aimed at developing international scientific and professional cooperation in the field of mining. Scopus,CAS,GeoRef,Engineering Village,SJR, DOAJ (mst.misis.ru)
Download Telegram
What are the environmental consequences of mining operations in Arctic regions?

The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.

For more information, see the article:

πŸ“Œ Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188

Subscribe to the journal's Telegram channel:
πŸ‘‰t.iss.one/MinSciTechπŸ‘ˆ

#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
πŸ‘4❀1πŸ”₯1πŸ‘1πŸ™1
How can we increase residual uranium extraction from previously worked-out blocks without significant cost? What factors influence the choice of solutions?

One of the most important factors in the formation of residual uranium reserves in worked-out blocks is the presence of clay minerals in the ore horizon. In this regard, the authors of the article published in the journal "Mining Science and Technology" conducted a number of studies on the adverse and positive effects of clay minerals on ISL process. Water permeability and relatively good filtration (not less than 0.5–1 m/day) of ores and rocks of a productive horizon (aquifer) is the most important hydrogeological factors affecting the performance of uranium ISL. The second most important hydrogeological factor is the lack of fluid communication between the productive aquifer and nonproductive aquifers, i.e., the obligatory presence of aquicludes.

For more information, see the article:

πŸ“Œ Petukhov O.F., Khalimov I.U., Istomin V.P., Karimov N.М. The effect of clay minerals on in-situ leaching of uranium. Mining Science and Technology (Russia). 2023;8(1):39-46. https://doi.org/10.17073/2500-0632-2022-10-20

Subscribe to the journal's Telegram channel:
πŸ‘‰t.iss.one/MinSciTechπŸ‘ˆ

#inenglish #MST #uranium #insituleaching #ISL #clay #clayminerals #filtration #diffusioncoefficient #permeability #waterpermeability #sorption #montmorillonite #kaolinite #aquiclude #nitrateions #cationexchangecapacity #CEC #bentonite #ore #horizon #orehorizon #uraniumreserves #residualuraniumreserves #hydrogeologicalfactors #sulfatesolutions #bicarbonatesolutions #staticuraniumexchangecapacity #colloidalspecies #filtrationcoefficient #aquiclude #protectiveaquiclude #uraniumsorption #clayswelling #permeability #sands #sandstone #sandstonetypedeposits #uraniumextraction #claycontent #uraniumlosses #clayaquicludeprotectiveaction #ore
πŸ‘3❀1⚑1πŸ”₯1πŸ‘1πŸ’©1πŸ’―1