We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols – a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
📌 Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols – a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
📌 Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
👍3⚡1❤1👏1
We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
❤2⚡1👍1🔥1👏1