We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
❤2⚡1👍1🔥1👏1