How to increase KCl recovery during beneficiation of natural potash ores?
The main source of potassium fertilizers is sylvinite ores consisting primarily of halite (NaCl), silicate and clay-carbonate slurries (clay-salt slurries). Processing of natural potash ores is mainly carried out by the flotation method, which separates KCl, NaCl, and clay-salt slurry. The research is aimed at revealing the effect of sonochemical pretreatment of the depressor reagents, CMC and starch, on dynamic viscosity, aggregate size, electrokinetic potential of these reagent solutions and sylvin flotation performance. Sonochemical pretreatment of sylvin flotation depressors contributes to an increase in KCl recovery and a decrease in the slurry content in the flotation concentrate.
You can learn more about this from the article in our journal:
π₯ Burov V.E., Poilov V.Z., Huang Z., Chernyshev A.V., Kuzminykh K.G. Effect of sonochemical pretreatment of slurry depressors on sylvin flotation performance. Mining Science and Technology (Russia). 2022;7(4):298β309. https://doi.org/10.17073/2500-0632-2022-08-09 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #mining #beneficiation #flotation #ultrasound #depressor #slurry #carboxymethylcellulose #starch #zeta_potential #viscosity #recovery #ore #fertilizer #sylvinite
The main source of potassium fertilizers is sylvinite ores consisting primarily of halite (NaCl), silicate and clay-carbonate slurries (clay-salt slurries). Processing of natural potash ores is mainly carried out by the flotation method, which separates KCl, NaCl, and clay-salt slurry. The research is aimed at revealing the effect of sonochemical pretreatment of the depressor reagents, CMC and starch, on dynamic viscosity, aggregate size, electrokinetic potential of these reagent solutions and sylvin flotation performance. Sonochemical pretreatment of sylvin flotation depressors contributes to an increase in KCl recovery and a decrease in the slurry content in the flotation concentrate.
You can learn more about this from the article in our journal:
π₯ Burov V.E., Poilov V.Z., Huang Z., Chernyshev A.V., Kuzminykh K.G. Effect of sonochemical pretreatment of slurry depressors on sylvin flotation performance. Mining Science and Technology (Russia). 2022;7(4):298β309. https://doi.org/10.17073/2500-0632-2022-08-09 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #mining #beneficiation #flotation #ultrasound #depressor #slurry #carboxymethylcellulose #starch #zeta_potential #viscosity #recovery #ore #fertilizer #sylvinite
π4β€1β‘1π₯1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
Scientists conducting research at the mines of the VVerkhnekamsk potassium-magnesium salt deposit (VPMSD) discovered an interesting pattern: gas-air surveys show that the volume of gaseous impurities in the main ventilation drifts is often significantly lower than in the working areas of dead-end workings. This phenomenon of decreasing gas concentrations along the ventilation airflow path is explained not only by the dilution of impurities due to fresh air leaks but also by the chemical neutralization of gases through interaction with the potash rock mass. Previously conducted laboratory studies confirmed the ability of sylvinite (NaCl + KCl) to absorb toxic and combustible gases. This paper presents the results of field studies at one of the VPMSD mines, where the dynamics of gas impurities in the workings were studied, taking into account both chemical processes and ventilation factors. Specialists measured the concentration of combustible and toxic gases in seams of different mineral compositions and analyzed the influence of potash salt properties on the gas composition in long dead-end workings. Laboratory analysis of the collected air samples, performed by chromatographic method using the "CHROMOS GH-1000" instrument, made it possible to quantitatively assess the contribution of gas neutralization and dilution processes to the reduction of harmful impurity concentrations. The results showed that in long dead-end workings of seam AB (100 m or more), the content of gaseous impurities consistently decreases as the distance from the dead end to the mouth of the working increases. The study also examined other factors influencing changes in the gas composition in mine workings.
For more information, see the article:
π Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mine #gas #sorption #leaks #sylvinite #methane #CO #CO2 #H2S #ventilation #shaft #safety #chemistry #science #mining #analysis #experiment #laboratory #air #seam #measurement #point #length #path #jet #face #mouth #volume #harm #risk #standard #method #device #data #result #experience #salt #KCl #NaCl #zone #deadend #tube #speed #pressure #balance #neutralization
β€1π1π₯1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
π3β‘1β€1π1