We present the articles of the third issue of scientific journal "Mining Science and Technology” (Russia) for 2024:
“Invisible” gold is referred to submicroscopic gold particles that are 1–100 nm in size and are not detected using optical or electron microscopy. The presence of “invisible” gold and silver in ores complicates the selection of flow charts for their processing and owes the necessity for the development of new process solutions and improvement of existing ones. Experiments have shown the necessity of using magnetite to achieve coarsening fine silver particles. The optimal magnetite content is 10%, which leads to the formation of spherical aggregates of silver with a size of 20-40 microns. As a result of processing, it was possible to increase the particle size of precious metals up to 20-50 microns, which can then be extracted using traditional enrichment methods.
For more information, see the article:
🔥 Aleksandrova Т.N., Afanasova A.V., Aburova V.A. “Invisible” noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Mining Science and Technology (Russia). 2024;9(3):231-242. https://doi.org/10.17073/2500-0632-2024-03-229 🔥
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #flotation #silver #magnetite #gold #microwave #processing
“Invisible” gold is referred to submicroscopic gold particles that are 1–100 nm in size and are not detected using optical or electron microscopy. The presence of “invisible” gold and silver in ores complicates the selection of flow charts for their processing and owes the necessity for the development of new process solutions and improvement of existing ones. Experiments have shown the necessity of using magnetite to achieve coarsening fine silver particles. The optimal magnetite content is 10%, which leads to the formation of spherical aggregates of silver with a size of 20-40 microns. As a result of processing, it was possible to increase the particle size of precious metals up to 20-50 microns, which can then be extracted using traditional enrichment methods.
For more information, see the article:
🔥 Aleksandrova Т.N., Afanasova A.V., Aburova V.A. “Invisible” noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Mining Science and Technology (Russia). 2024;9(3):231-242. https://doi.org/10.17073/2500-0632-2024-03-229 🔥
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #flotation #silver #magnetite #gold #microwave #processing
❤2⚡1👍1🔥1👏1🙏1
Dry technologies for processing and enrichment of mineral raw materials - pros and cons!
The use of dry methods of processing and beneficiation of mineral raw materials is one of the promising areas, as this approach to concentrate production is less energy-consuming, less labor-intensive, and economically beneficial. However, this method of enrichment is not always technologically effective. Experimental studies on the experimental studies on preliminary dry separation of Arkachan deposit ores to determine the quality of beneficiation of the separation products are presented in an article in the journal Mining Science and Technology. The results of the study showed, dry beneficiation as applied to the ores of Arkachan deposit is technologically inefficient. Additional laboratory studies of pneumatic separation processes at high degree of ore materials grinding are required. The authors of the study are confident that their methodological approach will be useful for colleagues in substantiating technologies for processing and beneficiation of mineral raw materials.
For more information, see the article:
📌 Matveev А.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #gold #grinding #crushing #pneumaticseparation #gravity #concentrator #classification #mill #crusher #recovery #concentrate #tails #size #fractions #separation #content #release #surface #pneumaticseparator #magnetic #dry #goldbearing #cycle #deposit #sample #methodology #test #technology #efficiency #property #particle #material #economy #recycling
The use of dry methods of processing and beneficiation of mineral raw materials is one of the promising areas, as this approach to concentrate production is less energy-consuming, less labor-intensive, and economically beneficial. However, this method of enrichment is not always technologically effective. Experimental studies on the experimental studies on preliminary dry separation of Arkachan deposit ores to determine the quality of beneficiation of the separation products are presented in an article in the journal Mining Science and Technology. The results of the study showed, dry beneficiation as applied to the ores of Arkachan deposit is technologically inefficient. Additional laboratory studies of pneumatic separation processes at high degree of ore materials grinding are required. The authors of the study are confident that their methodological approach will be useful for colleagues in substantiating technologies for processing and beneficiation of mineral raw materials.
For more information, see the article:
📌 Matveev А.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #gold #grinding #crushing #pneumaticseparation #gravity #concentrator #classification #mill #crusher #recovery #concentrate #tails #size #fractions #separation #content #release #surface #pneumaticseparator #magnetic #dry #goldbearing #cycle #deposit #sample #methodology #test #technology #efficiency #property #particle #material #economy #recycling
👍4⚡1❤1🔥1👏1
Can we extract gold from old mining waste? New research reveals potential
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits — long considered worthless — and found they could now be economically viable to process.
Key findings:
✔️ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine –75 µm fraction after grinding.
✔️ Dominant minerals: quartz, muscovite, and kaolinite—typical of gold-quartz ore types.
✔️ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
🔹 Heap leaching — the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70–80% gold recovery.
🔹 For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterday’s waste could become tomorrow’s gold source — boosting profits while reducing environmental impact.
For more information, see the article:
📌 Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits — long considered worthless — and found they could now be economically viable to process.
Key findings:
✔️ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine –75 µm fraction after grinding.
✔️ Dominant minerals: quartz, muscovite, and kaolinite—typical of gold-quartz ore types.
✔️ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
🔹 Heap leaching — the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70–80% gold recovery.
🔹 For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterday’s waste could become tomorrow’s gold source — boosting profits while reducing environmental impact.
For more information, see the article:
📌 Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
👍3❤2⚡1🔥1👏1
🔍 Dry vs wet: unexpected results for Arkachan gold ore
Comparison Methods:
✔️ Dry Processing: Crushing (DKD-300) + Grinding (TsMVU-800) + Pneumatic Separation (POS-2000)
✔️ Wet Processing: Gravity Separation with GRG Test (ITOMAK-0.1)
📊 Key Data:
Gold Distribution:
✔️ 27.35% in -0.2+0.1 mm class;
✔️ 11.75% in -0.1+0.071 mm class;
✔️ 23.46% in -0.071 mm class;
→ Total 62.56% in particles <0.2 mm
Method Efficiency:
✔️ pneumatic Separation: 35.25% recovery at 1.8 t/h;
✔️ GRG Test: 73.91% recovery with grinding to 80% passing 0.071 mm.
GRG Test Results by Stage:
✔️ Stage 1 (-1 mm): 40.20% recovery;
✔️ Stage 2 (-0.315 mm): +14.46%;
✔️ Stage 3 (-0.071 mm): +20.88%.
Conclusions:
1. Dry methods are ineffective for fine-grained gold (<100 µm).
2. Gravity separation requires fine grinding but achieves high recovery.
3. Major losses are due to incomplete liberation of gold in pyrite.
🔗 Full Article:
Matveev А.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
🔔 Subscribe: @MinSciTech
💬 What modern methods could improve dry processing for such ores?
#InEnglish #MST #Mining #Gold #Beneficiation #Crusher #Mill #Separator #DryProcessing #ParticleSize #Pyrite #Sample #Ore #Test #Method #Analysis #Stage #Class #Gravity #FineGrained #Particles #Concentrate #Grinding #Efficiency #Crushing #Recovery #Flowchart #Cycle #Fraction #Balance #Parameter #Mode #Degree #Impact #Abrasion #Subsample #Sludge #Pulp #SizeFraction #Feed #Tailings #Losses #Product #Intergrowths
P.S. For ores with fine-grained gold, classical gravity remains optimal. Are there alternatives?
Comparison Methods:
✔️ Dry Processing: Crushing (DKD-300) + Grinding (TsMVU-800) + Pneumatic Separation (POS-2000)
✔️ Wet Processing: Gravity Separation with GRG Test (ITOMAK-0.1)
📊 Key Data:
Gold Distribution:
✔️ 27.35% in -0.2+0.1 mm class;
✔️ 11.75% in -0.1+0.071 mm class;
✔️ 23.46% in -0.071 mm class;
→ Total 62.56% in particles <0.2 mm
Method Efficiency:
✔️ pneumatic Separation: 35.25% recovery at 1.8 t/h;
✔️ GRG Test: 73.91% recovery with grinding to 80% passing 0.071 mm.
GRG Test Results by Stage:
✔️ Stage 1 (-1 mm): 40.20% recovery;
✔️ Stage 2 (-0.315 mm): +14.46%;
✔️ Stage 3 (-0.071 mm): +20.88%.
Conclusions:
1. Dry methods are ineffective for fine-grained gold (<100 µm).
2. Gravity separation requires fine grinding but achieves high recovery.
3. Major losses are due to incomplete liberation of gold in pyrite.
🔗 Full Article:
Matveev А.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
🔔 Subscribe: @MinSciTech
💬 What modern methods could improve dry processing for such ores?
#InEnglish #MST #Mining #Gold #Beneficiation #Crusher #Mill #Separator #DryProcessing #ParticleSize #Pyrite #Sample #Ore #Test #Method #Analysis #Stage #Class #Gravity #FineGrained #Particles #Concentrate #Grinding #Efficiency #Crushing #Recovery #Flowchart #Cycle #Fraction #Balance #Parameter #Mode #Degree #Impact #Abrasion #Subsample #Sludge #Pulp #SizeFraction #Feed #Tailings #Losses #Product #Intergrowths
P.S. For ores with fine-grained gold, classical gravity remains optimal. Are there alternatives?
👍4❤2🔥1🙏1💯1