We present the articles of the third issue of scientific journal "Mining Science and Technology” (Russia) for 2024:
“Invisible” gold is referred to submicroscopic gold particles that are 1–100 nm in size and are not detected using optical or electron microscopy. The presence of “invisible” gold and silver in ores complicates the selection of flow charts for their processing and owes the necessity for the development of new process solutions and improvement of existing ones. Experiments have shown the necessity of using magnetite to achieve coarsening fine silver particles. The optimal magnetite content is 10%, which leads to the formation of spherical aggregates of silver with a size of 20-40 microns. As a result of processing, it was possible to increase the particle size of precious metals up to 20-50 microns, which can then be extracted using traditional enrichment methods.
For more information, see the article:
🔥 Aleksandrova Т.N., Afanasova A.V., Aburova V.A. “Invisible” noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Mining Science and Technology (Russia). 2024;9(3):231-242. https://doi.org/10.17073/2500-0632-2024-03-229 🔥
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #flotation #silver #magnetite #gold #microwave #processing
“Invisible” gold is referred to submicroscopic gold particles that are 1–100 nm in size and are not detected using optical or electron microscopy. The presence of “invisible” gold and silver in ores complicates the selection of flow charts for their processing and owes the necessity for the development of new process solutions and improvement of existing ones. Experiments have shown the necessity of using magnetite to achieve coarsening fine silver particles. The optimal magnetite content is 10%, which leads to the formation of spherical aggregates of silver with a size of 20-40 microns. As a result of processing, it was possible to increase the particle size of precious metals up to 20-50 microns, which can then be extracted using traditional enrichment methods.
For more information, see the article:
🔥 Aleksandrova Т.N., Afanasova A.V., Aburova V.A. “Invisible” noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Mining Science and Technology (Russia). 2024;9(3):231-242. https://doi.org/10.17073/2500-0632-2024-03-229 🔥
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #beneficiation #ore #flotation #silver #magnetite #gold #microwave #processing
❤2⚡1👍1🔥1👏1🙏1
We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as Cu²⁺, Zn²⁺, and Fe²⁺ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic Na⁺ cations into the environment. The novelty of the method lies in using waste Al₂O₃–NaAlO₂ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L Cu²⁺, 180 mg/L Zn²⁺, and 125 mg/L Fe²⁺. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
📌 Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
❤2⚡1👍1🔥1👏1
We present the articles of the first issue of scientific journal "Mining Science and Technology” (Russia) for 2025:
Scientists studied finely ground tailings from the flotation processing of slags at the Sredneuralsky Copper Smelter ("SUMZ technical sands"), which contain zinc (3.3–3.9%) and copper (0.4–0.5%). These wastes can serve both as a source of valuable metals and as a potential environmental hazard. The study examined the material composition of the magnetic fractions of the "technical sands" and evaluated the efficiency of wet magnetic separation for extracting valuable components. Chemical and phase analyses revealed that zinc and copper were distributed relatively evenly across the fractions, with a slight increase in copper in the non-magnetic fraction and zinc in the weakly magnetic fraction. The application of wet magnetic separation under standard conditions proved insufficiently effective, indicating the need for further research to optimize the technology. The results are important for developing new methods of processing copper smelting waste and reducing its environmental impact.
For more information, see the article:
📌 Kotelnikova А.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #CopperSmeltingProduction #MineralWaste #CopperSmeltingSlag #FlotationTailings #Recycling #MagneticSeparation #ThermomagneticAnalysis #MagneticFractions #MagneticProperties #Fayalite #Forsterite #Diopside #Magnetite #Sphalerite #Zincite #HeavyMetals #WasteProcessing #NonferrousMetallurgy #EnvironmentalImpact #ResourceRecovery #SlagUtilization #Geochemistry #Mineralogy #SustainableMining #TechnogenicRawMaterials #Copper #Slags #Zinc #Waste #Flotation #Separation #Magnetism #Minerals #Ecology #Processing #Research #Technologies #Utilization #Disposal #Geology
Scientists studied finely ground tailings from the flotation processing of slags at the Sredneuralsky Copper Smelter ("SUMZ technical sands"), which contain zinc (3.3–3.9%) and copper (0.4–0.5%). These wastes can serve both as a source of valuable metals and as a potential environmental hazard. The study examined the material composition of the magnetic fractions of the "technical sands" and evaluated the efficiency of wet magnetic separation for extracting valuable components. Chemical and phase analyses revealed that zinc and copper were distributed relatively evenly across the fractions, with a slight increase in copper in the non-magnetic fraction and zinc in the weakly magnetic fraction. The application of wet magnetic separation under standard conditions proved insufficiently effective, indicating the need for further research to optimize the technology. The results are important for developing new methods of processing copper smelting waste and reducing its environmental impact.
For more information, see the article:
📌 Kotelnikova А.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #CopperSmeltingProduction #MineralWaste #CopperSmeltingSlag #FlotationTailings #Recycling #MagneticSeparation #ThermomagneticAnalysis #MagneticFractions #MagneticProperties #Fayalite #Forsterite #Diopside #Magnetite #Sphalerite #Zincite #HeavyMetals #WasteProcessing #NonferrousMetallurgy #EnvironmentalImpact #ResourceRecovery #SlagUtilization #Geochemistry #Mineralogy #SustainableMining #TechnogenicRawMaterials #Copper #Slags #Zinc #Waste #Flotation #Separation #Magnetism #Minerals #Ecology #Processing #Research #Technologies #Utilization #Disposal #Geology
👍2🔥1👏1🙏1