What are the environmental consequences of mining operations in Arctic regions?
The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.
For more information, see the article:
π Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
The problems of geoenvironmental consequences of mining operations are especially acute in the arctic and subarctic regions, where the spread of permafrost significantly reduces the buffering capacity of landscapes. The research, the results of which are published in the journal Mining Science and Technology, demonstrates data on the content of heavy metals in the soil cover of the transient zone between the middle taiga and north taiga landscapes of Western Yakutia under the conditions of mining operations. The authors proposed new approaches to evaluation assesses the resistance of different types of soils to heavy metals pollution. The heavy metals content was determined by atomic absorption spectrometry. Among the studied pollutants the greatest tendency to binding by natural organic ligands was revealed for such elements as lead and copper. Zinc and nickel will actively migrate in the ionic form. Cadmium occupies an intermediate position in terms of the ratio of ionic and organically bound forms. The data presented in the study can be used in monitoring the state of the soil cover in the mining zone.
For more information, see the article:
π Titov A.S., Toropov A.S. Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operations. Mining Science and Technology (Russia). 2024;9(2):170-182. https://doi.org/10.17073/2500-0632-2023-12-188
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #soil #heavymetals #pollution #cryolithic #WesternYakutia #diamond #mining #enterprises #geoecology #assessment #content #metals #cover #landscape #production #stability #analysis #spectrometry #modeling #structure #humus #migration #kimberlite #complex #geochemistry #thermodynamic #sample #horizon #zinc #nickel #cadmium #lead #copper #arsenic #mercury
mst.misis.ru
Geoenvironmetal assessment of different types of cryolithic soils in Western Yakutia under the conditions of diamond-mining operationsβ¦
π4β€1π₯1π1π1