How to estimate the modulus of deformation of a block rock masses using discrete element simulations?
The deformation modulus of rock mass is a fundamental parameter in the geomechanics of tunnels, mining, and other geotechnical rock-supported facilities. The mechanical properties of a rock mass, seen as a fractured medium, are determined by the intact rock, the pattern of relative joint-sets, the geometrical arrangement of the joints, and their mechanical properties. Joint sets, acting as planar discontinuities, confer scale and direction-dependent mechanical properties. The critical factor influencing the deformational behavior of a rock mass is the stiffness of its fractures and discontinuities. The present study investigates the anisotropic deformation modulus of blocky rock masses formed by three intersecting joint sets, including two orthogonal sets. This was achieved through discrete element simulations of representative volumes of blocky rock masses. These studies facilitate the estimation of the blocky rock mass deformation modulus in different directions without the need for laboratory and in-situ tests or empirical relationships.
For more information, see the article:
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116-133. https://doi.org/10.17073/2500-0632-2023-08-143
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
The deformation modulus of rock mass is a fundamental parameter in the geomechanics of tunnels, mining, and other geotechnical rock-supported facilities. The mechanical properties of a rock mass, seen as a fractured medium, are determined by the intact rock, the pattern of relative joint-sets, the geometrical arrangement of the joints, and their mechanical properties. Joint sets, acting as planar discontinuities, confer scale and direction-dependent mechanical properties. The critical factor influencing the deformational behavior of a rock mass is the stiffness of its fractures and discontinuities. The present study investigates the anisotropic deformation modulus of blocky rock masses formed by three intersecting joint sets, including two orthogonal sets. This was achieved through discrete element simulations of representative volumes of blocky rock masses. These studies facilitate the estimation of the blocky rock mass deformation modulus in different directions without the need for laboratory and in-situ tests or empirical relationships.
For more information, see the article:
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116-133. https://doi.org/10.17073/2500-0632-2023-08-143
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
mst.misis.ru
Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses | Ahrami | Mining Scienceβ¦
π3β‘1β€1π₯1π1
We present the articles of the fourth issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
The study assessed the impact of water inflows on the strength characteristics of the rocks of the Lovozero rare-metal deposit developed by the Karnasurt mine. he data on water inflow into Karnasurt mine workings, which exploits two ore bodies of the Lovozero rare-metal deposit, are considered. Statistical processing of the data on water volumes collected by the mine over the latest 4 years was performed, with assessment of their changes during a calendar year. The quantitative indicators of the changes in the strength characteristics of rocks due to water saturation were determined. It was found that the water saturation led to a decrease in the rock strength by up to 10β20%, especially for compressive strength values.
For more information, see the article:
π Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387-394. https://doi.org/10.17073/2500-0632-2023-09-160
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #mine #extraction #waterinflows #rocks #pillars #properties #strength #watersaturation #rockbursthazard #Lovozeroraremetaldeposit #Karnasurt #metaldeposit
The study assessed the impact of water inflows on the strength characteristics of the rocks of the Lovozero rare-metal deposit developed by the Karnasurt mine. he data on water inflow into Karnasurt mine workings, which exploits two ore bodies of the Lovozero rare-metal deposit, are considered. Statistical processing of the data on water volumes collected by the mine over the latest 4 years was performed, with assessment of their changes during a calendar year. The quantitative indicators of the changes in the strength characteristics of rocks due to water saturation were determined. It was found that the water saturation led to a decrease in the rock strength by up to 10β20%, especially for compressive strength values.
For more information, see the article:
π Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387-394. https://doi.org/10.17073/2500-0632-2023-09-160
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #mine #extraction #waterinflows #rocks #pillars #properties #strength #watersaturation #rockbursthazard #Lovozeroraremetaldeposit #Karnasurt #metaldeposit
π3β€2β‘1π₯1π1
π₯ Coming soon: new issue of "Mining Science and Technology" Journal!
π In the coming days, you'll discover fresh research, innovative technologies, and the latest trends in the mining industry.
This issue features:
π Voznesenskii A. S., Ushakov E. I., Kutkin Ya. O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties.
π Shilova T. V., Serdyukov S. V., Drobchik A. N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds.
π Starikov A. N., Maltsev S. V., Sukhanov A. E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings.
π Chernyi K. Π., Faynburg G. Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity.
π Mirzaeva E. I., Isaeva N. F., Yalgashev E. Ya., Turdiyeva D. P., Boymonov R. M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater.
π Kotelnikova A. L., Zolotova E. S. Material composition of magnetic fractions of copper-smelting slag flotation tailings.
π Rakhutin M. G., Tran V. H., Krivenko A. V., Giang Q. Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator.
π Malafeev S. I., Malafeeva A. A., Konyashin V. I., Novgorodov A. A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels.
π Klyuev R. V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
π In the coming days, you'll discover fresh research, innovative technologies, and the latest trends in the mining industry.
This issue features:
π Voznesenskii A. S., Ushakov E. I., Kutkin Ya. O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties.
π Shilova T. V., Serdyukov S. V., Drobchik A. N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds.
π Starikov A. N., Maltsev S. V., Sukhanov A. E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings.
π Chernyi K. Π., Faynburg G. Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity.
π Mirzaeva E. I., Isaeva N. F., Yalgashev E. Ya., Turdiyeva D. P., Boymonov R. M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater.
π Kotelnikova A. L., Zolotova E. S. Material composition of magnetic fractions of copper-smelting slag flotation tailings.
π Rakhutin M. G., Tran V. H., Krivenko A. V., Giang Q. Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator.
π Malafeev S. I., Malafeeva A. A., Konyashin V. I., Novgorodov A. A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels.
π Klyuev R. V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
β€3π2π₯1π1π1π―1
A new issue of Mining Science and Technology has been published! π
Volume 1, 2025 of Mining Science and Technology is now available!
The complete table of contents can be accessed here:
π https://mst.misis.ru/jour/issue/view/42/showToc
Featured in this issue:
1οΈβ£ Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Full article
2οΈβ£ Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Full article
3οΈβ£ Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Full article
4οΈβ£ Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Full article
5οΈβ£ Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., et al. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Full article
6οΈβ£ Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Full article
7οΈβ£ Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
Full article
8οΈβ£ Malafeev S.I., Malafeeva A.A., Konyashin V.I., Novgorodov A.A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels. Mining Science and Technology (Russia). 2025;10(1):75-83. https://doi.org/10.17073/2500-0632-2024-05-262
Full article
9οΈβ£ Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84-94. https://doi.org/10.17073/2500-0632-2024-10-362
Full article
π All articles are freely available in open access!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
Volume 1, 2025 of Mining Science and Technology is now available!
The complete table of contents can be accessed here:
π https://mst.misis.ru/jour/issue/view/42/showToc
Featured in this issue:
1οΈβ£ Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Full article
2οΈβ£ Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Full article
3οΈβ£ Starikov A.N., Maltsev S.V., Sukhanov A.E. Influence of the sorption properties of potash salts on the gas environment in dead-end mine workings. Mining Science and Technology (Russia). 2025;10(1):25-33. https://doi.org/10.17073/2500-0632-2024-01-210
Full article
4οΈβ£ Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Full article
5οΈβ£ Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., et al. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Full article
6οΈβ£ Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Full article
7οΈβ£ Rakhutin M.G., Tran V.H., Krivenko A.E., Giang Q.Kh. Impact of the technical condition of main pumps on fuel consumption in a hydraulic excavator. Mining Science and Technology (Russia). 2025;10(1):67-74. https://doi.org/10.17073/2500-0632-2024-01-179
Full article
8οΈβ£ Malafeev S.I., Malafeeva A.A., Konyashin V.I., Novgorodov A.A. Mechatronic system for running-in and testing of mechanical transmissions in mining shovels. Mining Science and Technology (Russia). 2025;10(1):75-83. https://doi.org/10.17073/2500-0632-2024-05-262
Full article
9οΈβ£ Klyuev R.V. Assessment of energy efficiency improvement strategies for ventilation and hoisting systems during the reconstruction of the Molibden mine. Mining Science and Technology (Russia). 2025;10(1):84-94. https://doi.org/10.17073/2500-0632-2024-10-362
Full article
π All articles are freely available in open access!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #RockMechanics #Concrete #FractureToughness #Acoustics #SoilMechanics #Strength #Polyurethane #Mine #Ventilation #Methane #Safety #Aerosol #Ecology #HeavyMetals #Adsorption #WasteUtilization #Excavator #Hydraulics #EnergyEfficiency #Mining
π5β€2β‘1π₯1π1π1π―1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
π2β‘1β€1π1π1π―1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
β€3π1π₯1π1π1
How to Improve Block Stone Quality with Blasting Technology?
The extraction of block stone is a critical process in the construction materials industry, where maintaining the integrity of the material for further use is paramount. The key challenge lies in minimizing induced fracturing and surface roughness of the blocks.
πΉ Key Aspects of the Technology:
βοΈ Stress wave interaction β plays a decisive role in forming the main rupture between blastholes.
βοΈ Optimal charge parameters β blasthole spacing, blast product pressure, and linear charge density influence the zone of induced fracturing.
βοΈ Orientation of the rupture plane β aligning it with natural fractures in the rock mass increases the yield of high-quality blocks.
πΉ Research Findings:
βοΈNumerical modeling confirmed that adjusting charge parameters localizes the fracture zone.
βοΈReducing blasthole spacing while increasing charge size within limits ensures directional splitting.
For more information, see the article:
π Kovalevsky V.N., Mysin A.V., Sushkova V.I. Theoretical aspects of block stone blasting method. Mining Science and Technology (Russia). 2024;9(2):97-104. https://doi.org/10.17073/2500-0632-2023-12-187
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #BlockRockMass #DrillingAndBlasting #DirectedFlow #ChargeDesign #BlastPulse #BlastPressure #StressDiagrams #DynamicStrength #Roughness #InducedFracturing #Stone #Blast #Charge #Mass #Cracks #Rock #Pressure #Strength #Granite #Tech
The extraction of block stone is a critical process in the construction materials industry, where maintaining the integrity of the material for further use is paramount. The key challenge lies in minimizing induced fracturing and surface roughness of the blocks.
πΉ Key Aspects of the Technology:
βοΈ Stress wave interaction β plays a decisive role in forming the main rupture between blastholes.
βοΈ Optimal charge parameters β blasthole spacing, blast product pressure, and linear charge density influence the zone of induced fracturing.
βοΈ Orientation of the rupture plane β aligning it with natural fractures in the rock mass increases the yield of high-quality blocks.
πΉ Research Findings:
βοΈNumerical modeling confirmed that adjusting charge parameters localizes the fracture zone.
βοΈReducing blasthole spacing while increasing charge size within limits ensures directional splitting.
For more information, see the article:
π Kovalevsky V.N., Mysin A.V., Sushkova V.I. Theoretical aspects of block stone blasting method. Mining Science and Technology (Russia). 2024;9(2):97-104. https://doi.org/10.17073/2500-0632-2023-12-187
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #BlockRockMass #DrillingAndBlasting #DirectedFlow #ChargeDesign #BlastPulse #BlastPressure #StressDiagrams #DynamicStrength #Roughness #InducedFracturing #Stone #Blast #Charge #Mass #Cracks #Rock #Pressure #Strength #Granite #Tech
π4β€1π₯1π1
How to determine the deformation modulus and anisotropy in blocky rock masses?
πΉ In a study published in Mining Science and Technology (Russia), the authors investigated the anisotropic behavior of blocky rock masses. They employed the discrete element method to model and analyze the deformation modulus as a function of loading direction, joint properties, and intact rock characteristics.
πΉ Key Findings:
βοΈ The deformation modulus depends on the Joint Roughness Coefficient (JRC) and the Uniaxial Compressive Strength (UCS) of the intact rock.
βοΈ The influence of joint roughness on the deformation modulus is three times greater than that of intact rock strength.
βοΈ The degree of anisotropy in the deformation modulus ranged from 1.6 β€ Rβ β€ 2.5, with an average value of 1.88.
βοΈ During joint sliding failure, the yield strain (0.2β0.4) is independent of the loading angle (ΞΈ) and the orientation of the third joint set (Ξ±).
πΉ Practical Applications:
The results enable the prediction of rock mass behavior without costly field tests, which is crucial for designing tunnels, boreholes, and other geotechnical structures.
Read the full study in Mining Science and Technology (Russia):
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116β133. https://doi.org/10.17073/2500-0632-2023-08-143
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
πΉ In a study published in Mining Science and Technology (Russia), the authors investigated the anisotropic behavior of blocky rock masses. They employed the discrete element method to model and analyze the deformation modulus as a function of loading direction, joint properties, and intact rock characteristics.
πΉ Key Findings:
βοΈ The deformation modulus depends on the Joint Roughness Coefficient (JRC) and the Uniaxial Compressive Strength (UCS) of the intact rock.
βοΈ The influence of joint roughness on the deformation modulus is three times greater than that of intact rock strength.
βοΈ The degree of anisotropy in the deformation modulus ranged from 1.6 β€ Rβ β€ 2.5, with an average value of 1.88.
βοΈ During joint sliding failure, the yield strain (0.2β0.4) is independent of the loading angle (ΞΈ) and the orientation of the third joint set (Ξ±).
πΉ Practical Applications:
The results enable the prediction of rock mass behavior without costly field tests, which is crucial for designing tunnels, boreholes, and other geotechnical structures.
Read the full study in Mining Science and Technology (Russia):
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116β133. https://doi.org/10.17073/2500-0632-2023-08-143
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
π3β€1π₯1π1π1