How to control the gas hazard pattern in underground workings after blasting?
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
📌 Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
Determining the sources of hazardous and toxic substances released into mine air, their gas composition, as well as providing each such source of pollution with the required amount of fresh air are important issues in terms of ensuring normal healthy and safe working conditions for miners. An article published in the journal "Mining Science and Technology" established the time-dependent changes in toxic gas concentrations after blasting, specifically at the working face, in the return ventilation current, and near the booster. In order to assess the reliability of the data obtained, the volume of released carbon oxides was calculated based on the data of gas analyzers and chemical reactions of explosives decomposition during detonation, depending on the types and weights of the explosives.
For more information, see the article:
📌 Olkhovskiy D.V., Parshakov O.S., Bublik S.A. Study of gas hazard pattern in underground workings after blasting. Mining Science and Technology (Russia). 2023;8(1):47-58. https://doi.org/10.17073/2500-0632-2022-08-86
Subscribe to the journal's Telegram channel:
👉t.iss.one/MinSciTech👈
#inenglish #MST #working #gas #blasting #mine #ventilation #toxic #gasdistribution #monitoring #dispersion #atmosphere #face #mixture #data #measurement #concentration #mouth #fan #flow #air #carbonoxides #gasanalyzer #model #dispersion #dependence #pipeline
👍3❤1🔥1👏1🙏1
❓ Can the setback distance of a mine ventilation duct be increased without losing efficiency?
New research has proven: even with a 21-meter setback from the working face, the air jet maintains its effectiveness, fully ventilating the dead-end drift.
🔹 Key findings:
✔️ Experiments conducted in an actual 29.2 m² cross-section drift with five setback variants (10-21 m)
✔️ 21.75 m/s jet velocity ensured proper ventilation even at maximum distance
✔️ Results verified through computer modeling
✔️ Derived equation correlates face velocity with drift geometry
🔹 Why it matters:
The discovery allows safely increasing duct setback to 20m for large cross-section drifts, simplifying mining operations.
For more information, see the article:
📌 Kamenskikh A.A., Faynburg G.Z., Semin M.A., Tatsiy A.V. Experimental study on forced ventilation in dead-end mine working with various setbacks of the ventilation pipeline from the working face. Mining Science and Technology (Russia). 2024;9(1):41-52. https://doi.org/10.17073/2500-0632-2023-08-147
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #MineVentilation #DeadEndFace #ForcedVentilation #VentilationDuctSetback #FieldExperiment #NumericalSimulation #AirflowPatterns #MiningTechnology #MiningSafety #Mining #Ventilation #Safety #DeadEnd #Airflow #FieldStudy #NumericalModeling #JetFlow #Turbulence #MineSafety #ForcedVentilation #Pipeline #CrossSection #Velocity #Vortex #StagnantZone #ANSYS #CFD #Regulations #Research #Engineering
New research has proven: even with a 21-meter setback from the working face, the air jet maintains its effectiveness, fully ventilating the dead-end drift.
🔹 Key findings:
✔️ Experiments conducted in an actual 29.2 m² cross-section drift with five setback variants (10-21 m)
✔️ 21.75 m/s jet velocity ensured proper ventilation even at maximum distance
✔️ Results verified through computer modeling
✔️ Derived equation correlates face velocity with drift geometry
🔹 Why it matters:
The discovery allows safely increasing duct setback to 20m for large cross-section drifts, simplifying mining operations.
For more information, see the article:
📌 Kamenskikh A.A., Faynburg G.Z., Semin M.A., Tatsiy A.V. Experimental study on forced ventilation in dead-end mine working with various setbacks of the ventilation pipeline from the working face. Mining Science and Technology (Russia). 2024;9(1):41-52. https://doi.org/10.17073/2500-0632-2023-08-147
Subscribe to our Telegram channel:
👉 t.iss.one/MinSciTech 👈
#InEnglish #MST #MineVentilation #DeadEndFace #ForcedVentilation #VentilationDuctSetback #FieldExperiment #NumericalSimulation #AirflowPatterns #MiningTechnology #MiningSafety #Mining #Ventilation #Safety #DeadEnd #Airflow #FieldStudy #NumericalModeling #JetFlow #Turbulence #MineSafety #ForcedVentilation #Pipeline #CrossSection #Velocity #Vortex #StagnantZone #ANSYS #CFD #Regulations #Research #Engineering
👍3❤1⚡1🔥1👏1🙏1