We present the articles of the third issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
A systematic approach to evaluating environmental safety in metro operations, based on modelling the development of defects in tunnel structures under the influence of hydrogeological factors, will help organize existing information on potential accidents and develop monitoring methods and measures to minimize risks that compromise the environmental sustainability of underground transport infrastructure.
For more information, see the article:
π Zhukov S.A. Substantiation of environmental safety in metro facility operations considering hydrogeological risks. Mining Science and Technology (Russia). 2024;9(3):283-291. https://doi.org/10.17073/2500-0632-2024-04-259
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #metro #underground #subway #ecology #safety #innovation #risks #geology #transport #hydrogeology #sustainability #accident #monitoring #tunnel #technology #construction #emission #energy #efficiency #concrete #defects #extraction #quicksand #aquifer #borehole #lining #deformation #leaching #tubbing #modeling #geomechanics #waterproofing #disposal #waste
A systematic approach to evaluating environmental safety in metro operations, based on modelling the development of defects in tunnel structures under the influence of hydrogeological factors, will help organize existing information on potential accidents and develop monitoring methods and measures to minimize risks that compromise the environmental sustainability of underground transport infrastructure.
For more information, see the article:
π Zhukov S.A. Substantiation of environmental safety in metro facility operations considering hydrogeological risks. Mining Science and Technology (Russia). 2024;9(3):283-291. https://doi.org/10.17073/2500-0632-2024-04-259
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #metro #underground #subway #ecology #safety #innovation #risks #geology #transport #hydrogeology #sustainability #accident #monitoring #tunnel #technology #construction #emission #energy #efficiency #concrete #defects #extraction #quicksand #aquifer #borehole #lining #deformation #leaching #tubbing #modeling #geomechanics #waterproofing #disposal #waste
π2β€1β‘1π₯1π1π1
We present the articles of the third issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
The paper presents the results of the dependence of wastewater treatment efficiency on the size of filtering material fractions.
For more information, see the article:
π Ivanova L.A., Prosekov A.Yu., Ivanov P.P. et al. Assessment of the efficiency of wastewater treatment from coal enterprises for suspended solids using various filtering materials. Mining Science and Technology (Russia). 2024;9(3):263-270. https://doi.org/10.17073/2500-0632-2024-03-227
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #wastewater #coal #suspension #filtration #quartzite #treatment #gravity #sedimentation #fraction #coagulation #sump #regeneration #washing #backwashing #dynamic #quarry #sand #crushedstone #zeolite #sorbent #pump #dam #dust #clay #method #technology #hydraulics
The paper presents the results of the dependence of wastewater treatment efficiency on the size of filtering material fractions.
For more information, see the article:
π Ivanova L.A., Prosekov A.Yu., Ivanov P.P. et al. Assessment of the efficiency of wastewater treatment from coal enterprises for suspended solids using various filtering materials. Mining Science and Technology (Russia). 2024;9(3):263-270. https://doi.org/10.17073/2500-0632-2024-03-227
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #wastewater #coal #suspension #filtration #quartzite #treatment #gravity #sedimentation #fraction #coagulation #sump #regeneration #washing #backwashing #dynamic #quarry #sand #crushedstone #zeolite #sorbent #pump #dam #dust #clay #method #technology #hydraulics
mst.misis.ru
Assessment of the efficiency of wastewater treatment from coal enterprises for suspended solids using various filtering materialsβ¦
π4β€1π₯1π1π1
Dry technologies for processing and enrichment of mineral raw materials - pros and cons!
The use of dry methods of processing and beneficiation of mineral raw materials is one of the promising areas, as this approach to concentrate production is less energy-consuming, less labor-intensive, and economically beneficial. However, this method of enrichment is not always technologically effective. Experimental studies on the experimental studies on preliminary dry separation of Arkachan deposit ores to determine the quality of beneficiation of the separation products are presented in an article in the journal Mining Science and Technology. The results of the study showed, dry beneficiation as applied to the ores of Arkachan deposit is technologically inefficient. Additional laboratory studies of pneumatic separation processes at high degree of ore materials grinding are required. The authors of the study are confident that their methodological approach will be useful for colleagues in substantiating technologies for processing and beneficiation of mineral raw materials.
For more information, see the article:
π Matveev Π.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #beneficiation #ore #gold #grinding #crushing #pneumaticseparation #gravity #concentrator #classification #mill #crusher #recovery #concentrate #tails #size #fractions #separation #content #release #surface #pneumaticseparator #magnetic #dry #goldbearing #cycle #deposit #sample #methodology #test #technology #efficiency #property #particle #material #economy #recycling
The use of dry methods of processing and beneficiation of mineral raw materials is one of the promising areas, as this approach to concentrate production is less energy-consuming, less labor-intensive, and economically beneficial. However, this method of enrichment is not always technologically effective. Experimental studies on the experimental studies on preliminary dry separation of Arkachan deposit ores to determine the quality of beneficiation of the separation products are presented in an article in the journal Mining Science and Technology. The results of the study showed, dry beneficiation as applied to the ores of Arkachan deposit is technologically inefficient. Additional laboratory studies of pneumatic separation processes at high degree of ore materials grinding are required. The authors of the study are confident that their methodological approach will be useful for colleagues in substantiating technologies for processing and beneficiation of mineral raw materials.
For more information, see the article:
π Matveev Π.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Comparative processing studies of the Arkachan deposit gold-bearing ores using dry separation and classical wet gravity separation methods. Mining Science and Technology (Russia). 2024;9(2):158-169. https://doi.org/10.17073/2500-0632-2023-10-168
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #beneficiation #ore #gold #grinding #crushing #pneumaticseparation #gravity #concentrator #classification #mill #crusher #recovery #concentrate #tails #size #fractions #separation #content #release #surface #pneumaticseparator #magnetic #dry #goldbearing #cycle #deposit #sample #methodology #test #technology #efficiency #property #particle #material #economy #recycling
π4β‘1β€1π₯1π1
We present the articles of the fourth issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
This article describes the successful drilling of wells X1 and X2 in North Goturdepe, which confirmed the presence of oil and gas reserves and allowed for optimizing the costs of constructing drilling pads. The application of directional drilling in the Caspian Sea accelerates exploration activities, increases the efficiency of hydrocarbon production, and reduces the environmental impact. While this method is becoming an important element of Turkmenistanβs energy strategy, further study of the environmental aspects is required to ensure the sustainable development of the industry.
For more information, see the article:
π Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #energysecurity #drilling #efficiency #exploration #innovation #technology #well #marineenvironment #CaspianSea #Turkmenistan
This article describes the successful drilling of wells X1 and X2 in North Goturdepe, which confirmed the presence of oil and gas reserves and allowed for optimizing the costs of constructing drilling pads. The application of directional drilling in the Caspian Sea accelerates exploration activities, increases the efficiency of hydrocarbon production, and reduces the environmental impact. While this method is becoming an important element of Turkmenistanβs energy strategy, further study of the environmental aspects is required to ensure the sustainable development of the industry.
For more information, see the article:
π Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #energysecurity #drilling #efficiency #exploration #innovation #technology #well #marineenvironment #CaspianSea #Turkmenistan
mst.misis.ru
Directional drilling of an exploratory well in the shallow waters of the Caspian Sea | Deryaev | Mining Science and Technologyβ¦
π2
Can we extract gold from old mining waste? New research reveals potential
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits β long considered worthless β and found they could now be economically viable to process.
Key findings:
βοΈ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine β75 Β΅m fraction after grinding.
βοΈ Dominant minerals: quartz, muscovite, and kaoliniteβtypical of gold-quartz ore types.
βοΈ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
πΉ Heap leaching β the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70β80% gold recovery.
πΉ For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterdayβs waste could become tomorrowβs gold source β boosting profits while reducing environmental impact.
For more information, see the article:
π Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
A new study of tailings from Tanzania's Golden Pride Project proves that even low-grade ores (just 0.72 g/t Au) can become profitable thanks to modern technology! Scientists analyzed 1.4 million tons of old waste deposits β long considered worthless β and found they could now be economically viable to process.
Key findings:
βοΈ Average gold content: 0.72 g/t, with 74% of the gold concentrated in the fine β75 Β΅m fraction after grinding.
βοΈ Dominant minerals: quartz, muscovite, and kaoliniteβtypical of gold-quartz ore types.
βοΈ Minimal harmful impurities (copper <0.05%, sulfur <0.5%), making extraction easier.
How can it be processed?
πΉ Heap leaching β the most cost-effective method for such ores. Similar deposits (e.g., Russia's Mayskoe) achieve 70β80% gold recovery.
πΉ For finer fractions, carbon-in-pulp (CIP) with grinding and classification works best.
Why does this matter now?
With rising gold prices and advancing tech, yesterdayβs waste could become tomorrowβs gold source β boosting profits while reducing environmental impact.
For more information, see the article:
π Shirima J., Wikedzi A., Rasskazova A.V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Mining Science and Technology (Russia). 2024;9(1):5-11. https://doi.org/10.17073/2500-0632-2023-07-130
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#Inenglish #MST #Gold #TailingsReprocessing #GoldenPride #HeapLeaching #CarbonInPulp #Mining #Mineralogy #GoldMining #LowGradeOre #Technology #Economics #Tanzania #Research #XRD #XRF #75micron #Kaolinite #Quartz #Muscovite #Sustainability
π3β€2β‘1π₯1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
Scientists conducted laboratory tests according to the International Society for Rock Mechanics (ISRM) methodology to investigate fracture toughness at interfaces between gypsum stone and sand-cement mortar. The fracture toughness coefficient K_IC was determined using cylindrical specimens 40 mm in diameter and 150 mm long with a V-shaped notch, tested in three-point bending. Results showed that the average KIC value for the rock-concrete interface was only 0.323 MPaΓβm β 4 times lower than for pure gypsum (1.327 MPaΓβm) and 2.5 times lower than for concrete specimens (0.858 MPaΓβm). Interestingly, the formation of a calibrated fracture during testing caused a 30% increase in the internal mechanical loss factor Qβ»ΒΉ, revealing new possibilities for fracture toughness evaluation using resonance methods. These findings have important practical implications for the design, operation and monitoring of industrial mining facilities containing rock-concrete interfaces.
For more information, see the article:
π Voznesenskii Π.S., Ushakov E.I., Kutkin Ya.O. Fracture toughness of rock-concrete interfaces and its prediction based on acoustic properties. Mining Science and Technology (Russia). 2025;10(1):5-14. https://doi.org/10.17073/2500-0632-2024-10-316
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #rocks #concrete #gypsum #flintstone #interface #properties #fracturetoughness #acoustics #study #testing #acousticmeasurements #elasticwaves #velocity #losses #prediction #strain #rockmechanics #geophysics #ISRM #KIC #Qfactor #monitoring #strength #failure #cement #science #technology #RSFgrant #nondestructivetesting #resonancemethod #mining #engineeringsolutions
π2β‘1β€1π1π1π―1
How to Optimize Ventilation in Mines Using Diesel Equipment?
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
πΉ Problem: Modern mines utilize high-power diesel equipment, significantly increasing ventilation load. Traditional airflow calculation methods overestimate requirements by 50%, leading to substantial costs.
πΉ Solution: Researchers developed a novel methodology based on field measurements of actual emissions and numerical simulation. This enables precise determination of airflow needed to dilute harmful substances to safe concentrations.
πΉ Key Results:
β Reduced ventilation costs through accurate emission accounting
β Optimized air distribution in mine workings
β 3.5Γ decrease in CO and NOβ concentrations with proper ventilation
For more information, see the article:
π Senatorov V.A. Determining airflow requirements in mine workings based on field measurements of actual emissions from internal combustion engine equipment. Mining Science and Technology (Russia). 2024;9(1):53-59. https://doi.org/10.17073/2500-0632-2024-01-203
π‘ Conclusion: Innovative calculation methods represent a breakthrough in cost efficiency and environmental safety for mining operations!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #mining #ventilation #diesel #exhaustgases #numericalsimulation #safety #undergroundmining #ICE #aerodynamics #fieldmeasurements #concentration #CO #NOx #MAC #standards #optimization #costreduction #energyefficiency #technology #digitalization #monitoring #mineatmosphere #workings #aircontrol #hazardoussubstances #filtration #temperature #pressure #humidity #analysis #equipment #efficiency #research #methodology #calculation #dynamics #operationmode #load #results #implementation #practicalapplication
π5β€1β‘1π₯1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
β€3π1π₯1π1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
π3β‘1β€1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as CuΒ²βΊ, ZnΒ²βΊ, and FeΒ²βΊ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic NaβΊ cations into the environment. The novelty of the method lies in using waste AlβOββNaAlOβ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L CuΒ²βΊ, 180 mg/L ZnΒ²βΊ, and 125 mg/L FeΒ²βΊ. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
π Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
Scientists have developed a new method for producing adsorbents to extract heavy metals from mining wastewater. Mining and metallurgical operations generate large volumes of liquid waste containing valuable components. Processing copper-zinc ores produces metal-laden effluents with a wide range of accompanying elements, complicating treatment due to low concentrations of individual components and pH fluctuations. Heavy metals such as CuΒ²βΊ, ZnΒ²βΊ, and FeΒ²βΊ are highly toxic, non-biodegradable, and can accumulate in living organisms, posing risks to ecosystems and human health. Researchers proposed using zeolites based on kaolin and bentonite as an efficient alternative to chemical precipitation. These adsorbents exhibit high ion-exchange capacity, are easily regenerated, and release non-toxic NaβΊ cations into the environment. The novelty of the method lies in using waste AlβOββNaAlOβ suspension to adjust the composition of the alkaline alloy during zeolite synthesis, ensuring a specific crystalline structure. The technology involves alkaline fusion of bentonite or kaolin with sodium hydroxide, followed by dissolving the alloy in water, filtration, and hydrothermal crystallization. Optimized synthesis conditions achieved a metal recovery rate of 95% from model solutions with initial concentrations of 150 mg/L CuΒ²βΊ, 180 mg/L ZnΒ²βΊ, and 125 mg/L FeΒ²βΊ. The resulting zeolite adsorbents can be used to treat metal-contaminated water in closed-loop water systems, reducing environmental impact and conserving resources.
For more information, see the article:
π Mirzaeva E.N., Isaeva N.F., Yalgashev E.Ya., Turdiyeva D.P., Boymonov R.M. Preparation of adsorbents for the extraction of heavy metals from mining wastewater. Mining Science and Technology (Russia). 2025;10(1):45-55. https://doi.org/10.17073/2500-0632-2024-02-224
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #ore #processing #ecology #wastewater #treatment #heavymetals #adsorption #aluminosilicates #kaolin #zeolites #bentonite #crystallization #diffractogram #Uzbekistan #Almalyk #mining #metallurgy #water #pollution #science #technology #chemistry #research #Cu #Zn #Fe #Na #SiO2 #Al2O3 #NaOH
β€2β‘1π1π₯1π1
How to increase diamond recovery using froth separation?
A new study reveals innovative methods to improve the efficiency of froth separation for diamond-bearing kimberlites. Researchers have proposed solutions that could reduce diamond losses by up to 20%!
πΉ Key Findings:
1. Restoring diamond hydrophobicity by removing mineral coatings through combined treatment: thermal, ultrasonic, electrochemical, and reagent conditioning.
2. Optimal temperature regime:
- heating the feed to 85β90Β°C for preparation;
- conditioning at 30β40Β°C;
- separation at 20β24Β°C.
3. Collector optimization:
- adding low- and medium-molecular fractions increases collector efficiency by 16%;
- ketone additives enhance adhesion activity up to 87%.
4. Closed-loop water recycling with clarification reduces reagent consumption by 8% without compromising concentrate quality.
π Read the full article:
Morozov V.V., Kovalenko E.G., Dvoychenkova G.P., Pestryak I.V., Lezova S.P. Current trends of improving the efficiency of froth separation of diamond-bearing kimberlites. Mining Science and Technology (Russia). 2024;9(2):134-145. https://doi.org/10.17073/2500-0632-2023-07-136
π¬ Which mineral processing technologies do you find most promising? Share your thoughts in the comments!
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningScience #Diamonds #Kimberlites #Coatings #Conditioning #Hydrophobization #Collector #FrothSeparation #Flotation #WaterRecycling #Recycling #Mining #Innovation #Technology
A new study reveals innovative methods to improve the efficiency of froth separation for diamond-bearing kimberlites. Researchers have proposed solutions that could reduce diamond losses by up to 20%!
πΉ Key Findings:
1. Restoring diamond hydrophobicity by removing mineral coatings through combined treatment: thermal, ultrasonic, electrochemical, and reagent conditioning.
2. Optimal temperature regime:
- heating the feed to 85β90Β°C for preparation;
- conditioning at 30β40Β°C;
- separation at 20β24Β°C.
3. Collector optimization:
- adding low- and medium-molecular fractions increases collector efficiency by 16%;
- ketone additives enhance adhesion activity up to 87%.
4. Closed-loop water recycling with clarification reduces reagent consumption by 8% without compromising concentrate quality.
π Read the full article:
Morozov V.V., Kovalenko E.G., Dvoychenkova G.P., Pestryak I.V., Lezova S.P. Current trends of improving the efficiency of froth separation of diamond-bearing kimberlites. Mining Science and Technology (Russia). 2024;9(2):134-145. https://doi.org/10.17073/2500-0632-2023-07-136
π¬ Which mineral processing technologies do you find most promising? Share your thoughts in the comments!
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #MiningScience #Diamonds #Kimberlites #Coatings #Conditioning #Hydrophobization #Collector #FrothSeparation #Flotation #WaterRecycling #Recycling #Mining #Innovation #Technology
π4β‘1β€1π1π1
How to enhance flotation efficiency of complex ores using electrochemistry?
A new study proposes an innovative approach to flotation beneficiation based on direct potentiometry methods. Researchers have demonstrated that monitoring the electrochemical parameters of pulp can increase process efficiency by 7.8% while reducing reagent consumption!
πΉ Key Findings:
1. Electrochemical monitoring using ion-selective sensors (pH, AgβS, Pt) enables real-time determination of optimal reagent dosages.
2. Maintaining the AgβS electrode potential at -450 mV increased copper recovery in the concentrate to 83.1% (compared to 75.8% with conventional methods).
3. Reduced research time through automated pulp analysis and elimination of labor-intensive experiments.
4. Potential for AI integration to develop a "digital assistant" for flotation operators, capable of adapting to changes in ore composition.
π Read the full article:
Yakovleva T.A., Romashev A.O., Mashevsky G.N. Enhancing flotation beneficiation efficiency of complex ores using ionometry methods. Mining Science and Technology (Russia). 2024;9(2):146-157. https://doi.org/10.17073/2500-0632-2023-08-145
π¬ Which technologies do you think hold the most promise for automating mineral processing? Share your thoughts in the comments!
π Subscribe to our channel: @MinSciTech
#InEnglish #MST #Flotation #Beneficiation #ComplexOres #Potentiometry #Ionometry #Optimization #Electrodes #Simulation #Reagents #ExperimentalDesign #pH #Ag2S #PtElectrodes #Science #Technology #Innovation
A new study proposes an innovative approach to flotation beneficiation based on direct potentiometry methods. Researchers have demonstrated that monitoring the electrochemical parameters of pulp can increase process efficiency by 7.8% while reducing reagent consumption!
πΉ Key Findings:
1. Electrochemical monitoring using ion-selective sensors (pH, AgβS, Pt) enables real-time determination of optimal reagent dosages.
2. Maintaining the AgβS electrode potential at -450 mV increased copper recovery in the concentrate to 83.1% (compared to 75.8% with conventional methods).
3. Reduced research time through automated pulp analysis and elimination of labor-intensive experiments.
4. Potential for AI integration to develop a "digital assistant" for flotation operators, capable of adapting to changes in ore composition.
π Read the full article:
Yakovleva T.A., Romashev A.O., Mashevsky G.N. Enhancing flotation beneficiation efficiency of complex ores using ionometry methods. Mining Science and Technology (Russia). 2024;9(2):146-157. https://doi.org/10.17073/2500-0632-2023-08-145
π¬ Which technologies do you think hold the most promise for automating mineral processing? Share your thoughts in the comments!
π Subscribe to our channel: @MinSciTech
#InEnglish #MST #Flotation #Beneficiation #ComplexOres #Potentiometry #Ionometry #Optimization #Electrodes #Simulation #Reagents #ExperimentalDesign #pH #Ag2S #PtElectrodes #Science #Technology #Innovation
π4β‘1β€1π₯1π1
We present the articles of the second issue of scientific journal "Mining Science and Technology" (Russia) for 2025:
Scientists have proposed a new approach to calculating the optimal width of a dredge front bank, which reduces the cost of placer deposit mining. The study demonstrates that existing methods, focused solely on maximizing dredge productivity, fail to minimize costs when the depth of the placer and overburden thickness increase. The authors developed a methodology for determining the front bank width that accounts not only for dredge performance but also for stripping costs and the extraction of valuable components. The research analyzed the influence of placer parameters (peat thickness, productive layer thickness, front bank width) on economic efficiency, evaluated over 100 process flow sheets for equipment operation, and provided their economic assessment. The results include recommended correction factors for calculating the optimal front bank width, serving as a methodological foundation for designing dredge mining systems.
For details, see the article in Mining Science and Technology:
π Talgamer B.L., Meshkov I.A., Murzin N.V., Roslavtseva Yu.G. Justification of the optimal width of a front bank. Mining Science and Technology (Russia). 2025;10(2):99-108. https://doi.org/10.17073/2500-0632-2024-11-332
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#inEnglish #MST #placerdeposits #dredging #frontbankwidth #stripping #miningcosts #extraction #mining #dredge #peat #sands #optimization #technology #economics #science #research #methodology #coefficients #miningequipment
Scientists have proposed a new approach to calculating the optimal width of a dredge front bank, which reduces the cost of placer deposit mining. The study demonstrates that existing methods, focused solely on maximizing dredge productivity, fail to minimize costs when the depth of the placer and overburden thickness increase. The authors developed a methodology for determining the front bank width that accounts not only for dredge performance but also for stripping costs and the extraction of valuable components. The research analyzed the influence of placer parameters (peat thickness, productive layer thickness, front bank width) on economic efficiency, evaluated over 100 process flow sheets for equipment operation, and provided their economic assessment. The results include recommended correction factors for calculating the optimal front bank width, serving as a methodological foundation for designing dredge mining systems.
For details, see the article in Mining Science and Technology:
π Talgamer B.L., Meshkov I.A., Murzin N.V., Roslavtseva Yu.G. Justification of the optimal width of a front bank. Mining Science and Technology (Russia). 2025;10(2):99-108. https://doi.org/10.17073/2500-0632-2024-11-332
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#inEnglish #MST #placerdeposits #dredging #frontbankwidth #stripping #miningcosts #extraction #mining #dredge #peat #sands #optimization #technology #economics #science #research #methodology #coefficients #miningequipment
β€3π1π₯1π1π1π―1