This media is not supported in your browser
VIEW IN TELEGRAM
🤔 В чем секрет этого супер-ножа? Физика процесса 🔊
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
🔥73❤31👍17⚡7🤔2🤯2🙈2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🛩 Аэродинамика крыла: почему самолёт падает, когда «задирает нос»?
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
✈️ Сначала — магия подъёмной силы
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥99❤42👍23✍7⚡2😱1
Знакомые нам Цельсий и Фаренгейт — продукты своей эпохи.
▪️ Фаренгейт (1724): Даниил Фаренгейт был практиком. За ноль он взял температуру самой холодной зимы в Данциге (смесь льда, воды и нашатыря). Второй точкой стала температура человеческого тела (96°F — да, он немного ошибся). А 32°F для льда и 212°F для кипения воды получились уже потом. Шкала была очень точной для своего времени, но ее точки отсчета кажутся нам сегодня случайными.
▪️ Цельсий (1742): Андерс Цельсий был ученым. Его шкала была гениальной в своей простоте: 0° — таяние льда, 100° — кипение воды (при нормальном давлении, конечно). Все логично и повторяемо. Но это все еще эмпирическая шкала.
🌡 Абсолютная Идея: Лорд Кельвин и ноль
В 19 веке физики поняли: температура — это мера движения молекул. Чем быстрее они двигаются, тем выше температура. Логичный вопрос: а что будет, если движение полностью остановить? Уильям Томсон (Лорд Кельвин) предложил абсолютную термодинамическую шкалу (1848). Ее ноль — это температура, при которой тепловое движение прекращается. Это -273.15°C. Теперь мы знаем, что достичь этого нуля невозможно (согласно третьему началу термодинамики), но можно сколь угодно близко подойти.
Интересный факт: Шкала Кельвина не привязана к воде! Она основана на фундаментальных принципах работы идеальных тепловых машин (цикл Карно). Вода с ее точками кипения и замерзания — просто удобный практический эталон.
🥶 Физика на грани фантастики: Отрицательные температуры 🌡
А теперь — самое неинтуитивное. В термодинамике существует понятие отрицательной абсолютной температуры. Нет, это не холоднее абсолютного нуля. Это — горячее любой положительной температуры.
Как это возможно? Забудем на секунду о кинетической энергии. Вспомним про энтропию — меру беспорядка. Обычно, когда вы добавляете энергии системе, молекулы раскачиваются, и энтропия (беспорядок) растет. Но представьте систему с ограниченным количеством энергетических уровней, например, набор атомных спинов в магнитном поле. Есть состояние с низкой энергией (спины в одну сторону) и высокой энергией (спины в другую).
1. При абсолютном нуле все спины в основном состоянии — максимальный порядок.
2. При добавлении энергии спины начинают хаотично переворачиваться — энтропия растет (положительная температура).
3. А что, если мы принудительно перевернем большинство спинов в состояние с высокой энергией? Мы получим снова почти полный порядок (только теперь на "верхнем" уровне), но система будет обладать огромной энергией! Энтропия при этом уменьшается с ростом энергии.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥105👍37❤30🤔10🤯9✍1
📚 Физика (Американский курс физики для средней школы) [1973-1974] Комитет содействия изучения физики при Массачусетском технологическом институте
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
💡 Physics.Math.Code // @physics_lib
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
+79616572047
(СБП) ЮMoney: 410012169999048
💡 Physics.Math.Code // @physics_lib
👍18❤7🔥2🤩1😍1🤗1
📚_Физика_Американский_курс_физики_для_средней_школы_1973_1974_.zip
61.3 MB
📚 Физика (Американский курс физики для средней школы) [1973-1974] Комитет содействия изучения физики при Массачусетском технологическом институте
Переводчик: Ахматов А.С.
Учебник разработан группой ведущих физиков-педагогов (Комитет содействия изучению физики при Массачусетском технологическом институте). В каждую часть включен перевод соответствующей части из методического руководства для преподавателей.
📕 Часть 1. Вселенная.
📘 Часть 2. Оптика и волны.
📗 Часть 3. Механика.
📙 Часть 4. Электричество и строение атома.
Книга явится полезным дополнением к существующим учебникам по физике. Она рассчитана на широкий круг читателей: учащихся средних школ, студентов техникумов, лиц, занимающихся самообразованием, и представляет большой интерес для преподавателей физики.
Около 1958 года в США среди педагогов средней и высшей школы сложилось убеждение в необходимости разработки и издания нового учебника и учебных пособий по физике для средней школы, в большей мере отражающих успехи развития современной физики, ее новые идеи и приложения. При Массачусетском технологическом институте в инициативном порядке был сформирован «Комитет содействия изучению физики» (Physical Science Study Committee, сокращенно PSSC). Под руководством этого Комитета очень большая группа ведущих физиков-педагогов разработала и издала новый учебник, руководство к лабораторным работам, четыре книги методического руководства для преподавателей (соответственно четырем частям учебника) и некоторые другие учебные пособия.
Этот учебник интересен во многих отношениях — по его замыслам, методике, подбору материала, манере изложения. Авторы излагают основы классической физики и одновременно стремятся дать возможно больше сведений об успехах современной физики. Они ничем не стесняют себя в выборе материала, черпая его как в самой физике, так и в смежных областях теоретического и прикладного знания.
💡 Physics.Math.Code // @physics_lib
Переводчик: Ахматов А.С.
Учебник разработан группой ведущих физиков-педагогов (Комитет содействия изучению физики при Массачусетском технологическом институте). В каждую часть включен перевод соответствующей части из методического руководства для преподавателей.
📕 Часть 1. Вселенная.
📘 Часть 2. Оптика и волны.
📗 Часть 3. Механика.
📙 Часть 4. Электричество и строение атома.
Книга явится полезным дополнением к существующим учебникам по физике. Она рассчитана на широкий круг читателей: учащихся средних школ, студентов техникумов, лиц, занимающихся самообразованием, и представляет большой интерес для преподавателей физики.
Около 1958 года в США среди педагогов средней и высшей школы сложилось убеждение в необходимости разработки и издания нового учебника и учебных пособий по физике для средней школы, в большей мере отражающих успехи развития современной физики, ее новые идеи и приложения. При Массачусетском технологическом институте в инициативном порядке был сформирован «Комитет содействия изучению физики» (Physical Science Study Committee, сокращенно PSSC). Под руководством этого Комитета очень большая группа ведущих физиков-педагогов разработала и издала новый учебник, руководство к лабораторным работам, четыре книги методического руководства для преподавателей (соответственно четырем частям учебника) и некоторые другие учебные пособия.
Этот учебник интересен во многих отношениях — по его замыслам, методике, подбору материала, манере изложения. Авторы излагают основы классической физики и одновременно стремятся дать возможно больше сведений об успехах современной физики. Они ничем не стесняют себя в выборе материала, черпая его как в самой физике, так и в смежных областях теоретического и прикладного знания.
💡 Physics.Math.Code // @physics_lib
🔥20👍9⚡2🤩2❤1