Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
⚡️ 🔩 Анодирование деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.

Существует два метода анодирования:

▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.

▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.

Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥24135🤩2😍2👻1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤‍🔥39👍2418🔥75🤨4🤔3🆒2
Media is too big
VIEW IN TELEGRAM
О свойствах параболы

▪️ Вершина параболы — точка, в которой она меняет направление (самая высокая или низкая точка). Координаты вершины можно найти по формуле: x = −b / (2a), y = f(x). Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

▪️ Парабола (греч. παραβολή — приближение) — плоская кривая, один из типов конических сечений.

▪️ Античные математики определяли параболу как результат пересечения кругового конуса с плоскостью, которая не проходит через вершину конуса и параллельна его образующей (см. рисунок). В аналитической геометрии удобнее эквивалентное определение: парабола есть геометрическое место точек на плоскости, для которых расстояние до заданной точки (фокуса) равно расстоянию до заданной прямой (директрисы). Если фокус лежит на директрисе, то парабола вырождается в прямую.

▪️Каноническое уравнение параболы в прямоугольной системе координат: y² = 2⋅p⋅x, где p — фокальный параметр, равный расстоянию от фокуса до директрисы

▪️В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена: A⋅x² + B⋅x⋅y + C⋅y² + D⋅x + E⋅y + F = 0

▪️Парабола в полярной системе координат (ρ,ϑ) с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением ρ⋅(1 - cos(ϑ)) = p, где p — фокальный параметр

▪️Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.

▪️Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе. Множество всех точек, из которых парабола видна под прямым углом, есть директриса. Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.

▪️Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.

▪️Траектория фокуса параболы, катящейся по прямой, есть цепная линия

▪️Описанная окружность треугольника, описанного около параболы, проходит через её фокус, а точка пересечения высот лежит на её директрисе

Вывод уравнения формы цепной линии. Физика нити, имеющей массу

💫 Математика эллипса: всё, что нужно знать

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
🔥50👍2015❤‍🔥4🤯3😍3🤩2🤔1😨1
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍8937🔥22😱11😍52
Media is too big
VIEW IN TELEGRAM
⚡️ Как работает радиосвязь: простое объяснение

Радиосвязь работает благодаря передаче информации с использованием электромагнитных волн (радиоволн). Сигнал преобразуется в радиоволны, распространяется в пространстве и принимается другим устройством. Процесс радиосвязи включает несколько этапов:
1. Формирование сигнала. Источник передаёт данные (голос, текст или другие виды информации) в радиопередатчик.
2. Модуляция. Передатчик преобразует данные в радиоволны, изменяя параметры несущей волны (амплитуду, частоту или фазу).
3. Передача. Сигнал передаётся через антенну и распространяется в радиопространстве.
4. Приём. Приёмное устройство улавливает сигнал, переданный через антенну, и демодулирует его для восстановления исходных данных.
5. Обратная связь. Для двусторонней связи процесс повторяется, позволяя участникам общаться в реальном времени.

Некоторые виды модуляции, используемые в радиосвязи:
▪️ Амплитудная модуляция (АМ). Амплитуда несущего сигнала изменяется в соответствии с величиной полезного сигнала.
▪️ Частотная модуляция (ЧМ). Амплитуда несущей волны остаётся постоянной, но её частота изменяется в зависимости от величины полезного сигнала.
▪️ Фазовая модуляция (ФМ). У несущего сигнала не меняется ни частота, ни амплитуда, но участки сигнала, передающие «0», сдвинуты по фазе относительно участка, передающего «1».

📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл

⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

⚡️ Фигуры Лихтенберга

🧲 ВЧ магнитное поле и ферромагнитная жидкость


⚡️ Обучающий фильм Электрический ток [СССР]

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥67👍29146❤‍🔥1
Media is too big
VIEW IN TELEGRAM
⚙️ Зубчатые колеса спиральной формы со спиральным расположением [Spiral-Shaped Gears in a Spiral Arrangement]

Из-за большого накопившегося передаточного числа последнее колесо-спираль вращается так быстро, что кажется, в видео пропущены кадры или имеется монтаж. Быстрая стабилизация создает ощущение зацикленности видео, а сущность увеличения скорости видно только в slow motion. А теперь я предлагаю вам ответить на несколько вопросов для лучшего понимания физики задачи:
▪️ Образуют ли геометрическую прогрессию передаточные числа зубчатых спиральных колес ?
▪️ Сколько должно быть таких архимедовых спиралей с заданными размерами, чтобы линейная скорость на конечной достигла скорости света ?
▪️ Что будет с последними спиралями на практике при многократном увеличении их количества ?
▪️ Постройте на черновике качественный график зависимости передаточного числа от времени

Передаточное число — один из параметров пары зацепления из двух зубчатых колёс, определяемый как отношение числа зубьев ведомой шестерни к числу зубьев ведущей (КПП или редуктора) . #физика #опыты #эксперименты #задачи #механика #physics #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7934🔥14🤯9🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Физика в чашке с водой

🕯Через некоторое время после того, как зажигается свеча, дощечка из пробкового дерева начинает вращаться. Почему же это происходит? Нагрев полой трубки приводит к тому, что воздух внутри расширяется и начинает выходить из концов трубки под водой. Каждый оторвавшийся пузырек воздуха придает импульс и вращающий момент системе. Однако, первоначальное движение (скорее всего) начинается за счет нагрева, расширения и выброса жидкости из загнутых концов трубки. Т. е. старт вращения по принципу реактивного движения. #видеоуроки #physics #физика #опыты #термодинамика #gif #гидродинамика #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5328🔥15🤔4🤯3
Media is too big
VIEW IN TELEGRAM
🧲 2D демонстрация магнитных полей при различных конфигурациях проводов с током ⚡️

A demonstration showing the magnetic field lines surrounding three different simple coil configurations. (Solenoid)

#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #magnetism

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥983
Media is too big
VIEW IN TELEGRAM
⚙️ Как работают шестеренные насосы и где их применяют?

Шестерённые насосы — устройства объёмного типа, предназначенные для перекачки жидкостей различной вязкости. Их работа основана на принципе вращения двух зубчатых колёс, создающих замкнутый объём, через который жидкость перемещается от входного к выходному отверстию. Особенность работы — способность создавать высокое давление даже при работе с вязкими жидкостями за счёт точного зацепления шестерён и герметичности корпуса.

Процесс работы шестерённого насоса:
1. Жидкость поступает во входной патрубок насоса.
2. При вращении шестерён зубья захватывают жидкость и перемещают её вдоль внутренней поверхности корпуса.
3. Жидкость изолируется в полостях между зубьями и корпусом, что предотвращает обратный поток.
4. За счёт плотного зацепления шестерён жидкость выталкивается через выходной патрубок, создавая давление.
5. Этот процесс повторяется циклически, обеспечивая непрерывную подачу жидкости.

Существует несколько видов шестерённых насосов, различающихся по принципу работы и конструкции:
▪️Насосы с внешним зацеплением — две шестерни находятся в зацеплении друг с другом, но не соединены внутри корпуса.
▪️Насосы с внутренним зацеплением — одна шестерня расположена внутри другой, а жидкость перемещается через их внутренний зазор. Такой механизм снижает пульсации и делает насосы более эффективными при работе с вязкими жидкостями.

💧 Гидравлика (12 частей)

🧲 Насос без подвижных частей может перекачивать жидкость, но как? ⚡️

💦 Рабочий насос с гибким рабочим колесом

#видеоуроки #physics #физика #опыты #механика #техника #гидродинамика #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6417🔥101🆒1
Охлаждение сверхпроводника жидким азотом способствует его следованию вдоль магнитной ленты

Эффект Мейсснера — полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник качественно отличается от «обычного» материала с высокой проводимостью.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и занимает некоторый тонкий слой вблизи поверхности. Например, в случае помещённого во внешнее поле шара (см. рис.) этот ток будет формироваться носителями заряда, движущимися в приповерхностном слое по кольцевым траекториям, лежащим в плоскостях, ортогональных плоскости рисунка и полю на бесконечности (радиус колец меняется от радиуса шара в середине до нуля вверху и внизу).

Роль идеальной проводимости состоит в том, что появившийся поверхностный ток протекает бездиссипативно и неограниченно долго — при конечном сопротивлении среда не смогла бы реагировать на наложение поля таким способом.

Магнитное поле возникшего тока компенсирует в толще сверхпроводника внешнее поле (уместна аналогия с экранированием электрического поля индуцированным на поверхности металла зарядом). В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.
#физика #факты #сверхпроводимость #электродинамика #опыты #эксперименты #physics

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3015👍143🤯3
This media is not supported in your browser
VIEW IN TELEGRAM
🪜 Задача по физике для наших подписчиков

Обе веревочные лестницы были выпущены в одно и то же время и при одинаковых условиях. Почему конец одной из них прилетел раньше?

#физика #physics #механика #gif #опыты #видеоуроки #научные_фильмы #эксперименты

💡 Physics.Math.Code // @physics_lib
🤔33👍2812🔥9❤‍🔥2🤯2🆒1
Фотоэлектрический эффект — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения. Внешний фотоэффект (фотоэлектронная эмиссия) — физическое явление, заключающееся в потере веществом (металлом) отрицательного заряда под действием электромагнитного излучения. Наблюдается при условии, что частота излучения выше некоторого значения, характерного для данного вещества (красной границы фотоэффекта). Объясняется тем, что фотоны электромагнитного излучения вырывают свободные электроны с поверхности металла. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внешний фотоэффект был открыт в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.

В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов, опубликовавший 6 работ. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Ещё Столетов пришёл к выводу, что «Разряжающим действием обладают, если не исключительно, то с громадным превосходством перед прочими лучами, лучи самой высокой преломляемости, недостающие в солнечном спектре», то есть вплотную подошёл к выводу о существовании красной границы фотоэффекта. В 1891 г. Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
43👍1611🔥9🌚1
Media is too big
VIEW IN TELEGRAM
Как сделать сварочный аппарат из карандаша и лезвия

Принцип работы: графитовый стержень на конце плюсового провода становится одним из контактов сети, минусовой контакт цепи закрепляется на свариваемой детали и также является токопроводящим. Когда стержень соприкасается с деталью, цепь замыкается, и на конце электрода возникает электрическая дуга.
Важно: провода лучше использовать покороче, так как с ростом длины растёт и их сопротивление, и мощности батарейки может не хватить на то, чтобы преодолеть это сопротивление. Графитовый стержень в процессе сварки сильно раскаляется, поэтому держать его следует плоскогубцами.

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥82👍24194🤯4
Электроника и схемотехника

В этом посте предлагаю обсудить вопросы, связанные с электроникой и цифровой схемотехникой. Всё это будет полезно начинающим.

◾️ 1. С чего начать изучать электронику?
◾️ 2. Стоит ли прочитать учебник по физике, раздел "электричество и магнетизм" ?
◾️ 3. Лучше начинать с аналоговых приборов или сразу переходить к изучению цифровой схемотехники?
◾️ 4. Нужны ли хорошие знания электроники человеку, занимающемуся программированием встраиваемых систем?
◾️ 5. Стоит ли пытаться травить платы самостоятельно или лучше заказать?
◾️ 6. Хлористое железо, лимонная кислота или фоторезистор?
◾️ 7. Что нужно спаять первым делом? С чего начинать практику?
◾️ 8. Какой набор инструментов/приборов хватит начинающему радиолюбителю?

#электроника #схемотехника #радиофизика #ночной_чат #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61🔥1412🗿3❤‍🔥2👏2🙈21
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.

Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.

Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.

Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.

История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11634🔥29🤷‍♂3👏3❤‍🔥22🤩2
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Инерция: почему она не работает в данном опыте? Почему шарик в воде отклоняется в другую сторону?

Попробуйте подумать самостоятельно и написать свой ответ в комментариях. Обсуждаем задачу здесь... ✍🏻

#физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍36105🔥3🤯3🤔1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
23👍21🔥10👻2🤯1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
👍52🔥1716🤯13🙈1