Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
⚙️ Моторист рассказывает о Volga Siber 🚘

ГАЗ Volga Siber (рус. Волга Сайбер) — российский среднеразмерный седан, выпускавшийся с 2008 по 2010 год. Представлен российской компанией «Группа ГАЗ» на выставке «Интеравто-2007» в Москве 29 августа 2007 года как GAZ Siber. В дальнейшем торговое название модели было изменено на Volga Siber. В 2008—2010 годах было выпущено лишь несколько небольших партий. Внешне от американских автомобилей-доноров Volga Siber отличается бамперами, дизайном радиаторной решётки и светотехникой. Автомобиль адаптирован к эксплуатации в российских условиях, в частности, повышена жёсткость подвески, улучшена управляемость, используется крепёж только с метрической, а не дюймовой, резьбой. Из явных недостатков в конструкции в российских условиях можно выделить малый клиренс — он составляет всего 140 мм.

Модель планировалось выпускать в двух комплектациях: Comfort (c двигателями 2,0 и 2,4) и Lux (двигатель 2,4 л). Имелись и планы по установке 2,7-литрового V6. Тем не менее в серийное производство пошли только 2,4-литровые модификации с четырёхступенчатой автоматической трансмиссией (АКПП). С начала апреля 2010 года появилась версия Volga Siber с 2,4-литровым двигателем и пятиступенчатой механической КПП (МКПП) NV-T350 производства New Venture Gear. Согласно информации производителя, такая модификация была создана с учётом пожеланий потенциальных покупателей. Для работы с МКПП двигатель седана доработали — в частности, повысили крутящий момент на низких оборотах. В результате базовой комплектацией Volga Siber стало исполнение Comfort с четырёхцилиндровым двигателем объёмом 2,429 л. с клапанным механизмом DOHC (143 л. с., 210 Н·м) и пятиступенчатой МКПП. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2923👍17😱6🌚5👏4🤯3🆒2🗿1
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔43🙈21🔥13😱10👍8🗿54🤯4🌚43👏3
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Перед ударом молнии в землю в атмосфере происходят физические процессы, связанные с образованием канала молнии, ионизацией воздуха и ролью электрического поля. Эти процессы также влияют на возникновение грома — звукового явления, сопровождающего разряд молнии. Перед основной вспышкой молнии формируется ступенчатый лидер — узкий канал ионизированного воздуха, который движется от облака к земле. Некоторые особенности процесса:
1. Электроны под действием разности потенциалов начинают двигаться к земле, сталкиваясь с молекулами воздуха, ионизируя их.
2. Из-за ионизации воздуха электропроводность в зоне траектории лидера возрастает, что создаёт путь для основного разряда.
3. Ионизация происходит неравномерно, поэтому лидер может разветвляться.

В сильном электрическом поле вблизи центра лидера происходит интенсивная ионизация атомов и молекул воздуха. Это происходит за счёт:
▪️бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (ударная ионизация);
▪️поглощения атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация).

Для возникновения молнии необходимо, чтобы в относительно малом объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~1 МВ/м), а в значительной части облака — поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~0,1–0,2 МВ/м). Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землёй: напряжённость электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряжённости больше 2500 кВ/м.

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Некоторые особенности механизма:
1. Вдоль пути разряда молнии возникает внезапное нагревание и сильное расширение воздуха, похожее на сильный взрыв.
2. Это расширение вызывает ударную волну, перемещающуюся в атмосфере и достигающую земной поверхности.
3. Обычно гром воспринимается не как отдельный резкий звук, а как ряд последовательных ударов — раскатов, которые отличаются интенсивностью и продолжаются по несколько секунд.

⚡️ Уравнения Максвелла

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

⚡️ Лучшая подборка экспериментов, связанных с током [МИФИ Гервидс Валериан Иванович]

🧊 Кварц используют как источник времени в кварцевых часах 📟

⚡️ Откуда берется трехфазный ток?

⚡️ Ручной генератор для зарядки в любых условиях

#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1165118🔥9🤯1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Инерция: почему она не работает в данном опыте? Почему шарик в воде отклоняется в другую сторону?

Попробуйте подумать самостоятельно и написать свой ответ в комментариях. Обсуждаем задачу здесь... ✍🏻

#физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍36105🔥3🤯3🤔1
Media is too big
VIEW IN TELEGRAM
💡 Тиристор — полупроводниковый прибор, предназначенный для однонаправленного преобразования тока (ток пропускается только в одну сторону). Имеет два устойчивых состояния:
«закрытое» — состояние низкой проводимости;
«открытое» — состояние высокой проводимости.
Назначение тиристора — выполнение функции электронного выключателя (ключа). Особенность — невозможность самостоятельного переключения в закрытое состояние. Тиристор состоит из четырёх чередующихся слоёв (структура p-n-p-n). Внутри прибора находятся три p-n-перехода, которые соединены последовательно.
У тиристора есть три вывода: анод, катод и управляющий электрод (его ещё называют затвором).

Принцип работы: Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора).
Особенности работы:
▪️После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала.
▪️Тиристор остаётся в открытом состоянии, пока протекающий через него ток превышает некоторую величину, называемую током удержания.
▪️Если ток снизится, тиристор автоматически закроется.

Тиристоры подразделяются, главным образом, по способу управления и проводимости. Например:
▪️Диодные (динисторы) — не содержат управляющих электродов, управляются напряжением, приложенным между основными электродами.
▪️Триодные (тринисторы) — содержат один управляющий электрод. В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду.
▪️Симметричные (симисторы) — способны проводить ток в обоих направлениях.

Применение: Тиристоры используются в схемах, где требуется надёжное включение и отключение тока, например в регуляторах мощности, фазовых переключателях и источниках питания. Также тиристоры применяются в ключевых устройствах, например, в силовом электроприводе.
#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7618🔥126🥰2🌚1👻1
Media is too big
VIEW IN TELEGRAM
Симистор (симметричный триодный тиристор, триак) — полупроводниковый прибор, разновидность тиристоров, используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).

Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.

Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.

Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.

Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.

Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6827🔥135👻1
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.

Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую ​​линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.

💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍5222🔥6❤‍🔥21
📚 Как решать задачи [20+ книг]

💾 Скачать книги

🔵 Физика – это основа всего естествознания, она необходима для изучения химии, биологии, географии, геологии, астрономии. В свою очередь для понимания самой физики большие познания в других естественных дисциплинах не требуются, однако нужны знания и навыки из такой науки, как математика. Считается, что физика на сегодня является самой развитой и формализованной (то есть описываемой с помощью математических инструментов) естественной наукой.

💡 Сделаем подборку книг о том как научиться решать физико-математические задачи? В комментариях обязательно напишите какие книги по физике ваши любимые!

#подборка_книг #физика #техника #physics #задачи #наука #science

💡 Physics.Math.Code // @physics_lib
35👍23🔥13🤩3😍1
📚 Как решать задачи [20+ книг].7z
147.2 MB
📚 Как решать задачи [20+ книг]

📗 Как научиться решать задачи. Книга для учащихся старших классов средней школы [1989] Фридман
📕 Как решают нестандартные задачи [2008] Канель-Белов, Ковальджи
📘 Учимся решать задачи по геометрии [1996] Полонский, Рабинович, Якир
📙 Как решать задачу [1961] Пойа Дж.
📒 Как решать задачи по физике [1967] Сперанский Н.М
📗 Как решать задачи по теоретической механике [2008] Антонов
📔 Как решать задачи по физике [1998] Гринченко
📓 Траблшутинг: Как решать нерешаемые задачи, посмотрев на проблему с другой стороны [2018] Фаер
📕 Как решать задачи по математике на вступительных экзаменах [1990] Мельников, Сергеев
📘 Математика и правдоподобные рассуждения [1953] Пойа Дж.
📙 Как решать задачи по физике, и почему их надо решать [2009] Варгин
📒Учитесь решать задачи по физике [1997] Ефашкин, Романовская, Тарасова
📗 Экспериментальные физические задачи на смекалку [1974] Ланге
📔 Физические парадоксы, софизмы и занимательные задачи [1967] Ланге
📓 Сто задач по физике

и
другие... #подборка_книг #физика #математика #геометрия #наука #physics #math #science

💡 Physics.Math.Code // @physics_lib
1👍5916❤‍🔥8🔥4😍3🤩2👻2😢1
☕️ Утренняя задачка по физике для разминки наших инженеров

Попробуйте подумать самостоятельно и написать ваш вариант ответа в комментариях.

#задачи #механика #физика #physics #science #наука #разбор_задач

💡 Physics.Math.Code // @physics_lib
👍43🔥1410🤔3🤯3😱1
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
23👍21🔥10👻1
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍4923🤔7🔥4🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
👍5116🔥16🤯13🙈1
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов

💾 Скачать книги

Для слушателей подготовительных отделений вузов, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
«Бесконечность и неделимое превосходят наше конечное понимание, первое из-за их величины, последнее из-за их малости; Представьте, что они представляют собой, если их объединить».
— Галилео Галилей.


📕 Физика в задачах Экзаменационные задачи с решениями [1985] Меледин Г. В

📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.

📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]

📚 Курс общей физики в 5 томах [2021] Савельев И.В.

📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск

📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП) Сбер: +79026552832 (СБП) ЮMoney: 410012169999048

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
20👍16🔥4🤩1🤗1
Задачи по физике [4 книги].zip
24.4 MB
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов

Содержит свыше 2000 задач по физике из числа предлагавшихся в физико-математической школе-интернате при Новосибирском государственном университете. Особое внимание уделено тем разделам, которые в школе изучаются недостаточно глубоко, но важны для успешного обучения в вузе. Включено много оригинальных задач, связанных с практикой научно-исследовательской работы. Все они снабжены ответами, наиболее трудные — решениями. В новом издании улучшена структура расположения материала, переработаны формулировки и решения ряда задач.

Для слушателей подготовительных отделений вузов и студентов первых курсов технических направлений, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.

«Изучение физики — это тоже приключение. Вы найдете это сложным, иногда разочаровывающим, иногда болезненным, а часто и щедро вознаграждающим».


#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍2116🔥4🤗3💯1🆒1
💡 Физика вокруг нас всегда. И от знания законов физики может зависеть ваша жизнь. Наглядно рассмотрим пример, в котором кроется не только простейшая школьная механика, но и сложная теория колебаний, теория устойчивости дифференциальных уравнений.

⚙️ Правильная развесовка прицепа — залог безопасности движения.

Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы

👨🏻‍💻 Physics.Math.Code // @phjysics_lib
👍5811🔥7💯4🤯1🤝1
Media is too big
VIEW IN TELEGRAM
💨 Стеклянный паровой двигатель выглядит особенно эстетично. Но безопасно ли?

Чешский стеклодув собрал действующую модель парового двигателя Стефенсона из стекла.
Немного фактов об изобретателе Стефенсоне:
▫️ 1. Построенный в 1825 году паровоз Стефенсона «Локомоушн № 1» уцелел до настоящего времени. Он использовался по назначению до 1857 года, а сейчас экспонируется в Дарлингтонском железнодорожном музее.
▫️ 2. В 1979 году, в честь 150-летия создания паровоза «Ракета», в Англии была построена его действующая копия. Она немного отличается от оригинала укороченной дымовой трубой. Это вызвано тем, что за прошедшие полтора столетия высота насыпи в Рэйнхилле (англ. Rainhill) заметно увеличилась, оставив меньший просвет под мостом.
▫️ 3. Портрет Джорджа Стефенсона был помещён на банкнотах серии Е Государственного банка Великобритании достоинством £5. В обращении эти купюры находились с 7 июня 1990 года по 21 ноября 2003 года.

🔥Паровая машина
— тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу, таким образом к паровым машинам можно было бы отнести и паровую турбину, имеющую до сих пор широкое применение во многих областях техники.

Первый паровой двигатель был создан и использован Фердинандом Вербистом в 1672 году в его изобретении — игрушкой на паровом двигателе, сделанной для китайского императора. Вторая паровая машина была построена в XVII веке французским физиком Дени Папеном и представляла собой цилиндр с поршнем, который поднимался под действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя было сделано американцем Оливером Эвансом в 1786 году и англичанином Ричардом Тревитиком в 1800 году. #gif #двс #механика #термодинамика #физика #physics #теплота

💡 Physics.Math.Code // @physics_lib
🔥26👍128🤔2👻2🤯1🤩1
Media is too big
VIEW IN TELEGRAM
🖥 Внутри центрального процессора. Полный демонтаж процессора IBM Power Processor

Внутри центрального процессора (CPU) компьютера находятся несколько компонентов, которые выполняют разные функции. Среди них — ядро, блок управления (CU), арифметико-логическое устройство (ALU) и кэш-память.

▪️Ядро: Базовый элемент CPU, выполняет вычисления, обрабатывает команды и управляет потоками данных. Некоторые функции ядра:
— Обработка команд — ядро считывает и интерпретирует инструкции из оперативной памяти или кэша, преобразуя их в действия.
— Арифметические и логические операции — основа всех вычислений.
— Управление потоками данных — ядро получает данные из оперативной памяти и передаёт результаты обратно.
— Взаимодействие с другими ядрами — в многоядерных процессорах ядра могут обмениваться данными через общую память и координировать выполнение задач.

▪️Блок управления (CU): Управляет работой процессора с помощью электрических сигналов. Некоторые функции CU:
— Декодирует инструкцию — понимает, что должна делать инструкция (например, арифметическая операция, доступ к памяти, операция ввода-вывода).
— Переводит инструкцию в сигналы, которые могут управлять другими частями процессора для выполнения требуемой операции.

▪️Арифметико-логическое устройство (ALU): Выполняет арифметические и логические операции с двоичными числами. Современные процессоры могут содержать несколько ALU, что позволяет выполнять несколько операций одновременно. Некоторые функции ALU:
— Арифметические операции — сложение, вычитание, умножение, деление.
— Логические операции — AND, OR, NOT, XOR (исключающее OR).

▪️Кэш-память: Высокоскоростная память, расположенная в близости к ядрам процессора. Основная задача — хранение данных, к которым процессор обращается наиболее часто или которые могут потребоваться в ближайшее время. Функции кэш-памяти:
— Сокращение времени доступа к данным — процессор может обращаться к кешу, не тратя время на обращение к более медленной оперативной памяти.
— Повышение эффективности многозадачности — наличие кеша позволяет быстрее переключаться между задачами и обрабатывать их параллельно, уменьшая задержки при обращении к данным.
— Оптимизация сложных вычислений — при работе с тяжёлыми вычислительными задачами (например, 3D-рендерингом, обработкой больших данных или машинным обучением) кэш-память помогает сократить время обработки за счёт минимизации обращений к оперативной памяти.

💽 Самые массовые HDD Seagate ST-225

🔬 Практическая задача по электронике для наших подписчиков

📚 3 книги по модернизации и ремонту компьютерного железа

📘 Основы компьютерной электроники [2019] Фомин

#железо #электроника #hdd #hardware #схемотехника #physics #видеоуроки #comuter_science #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍431🤯1