Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Очистка жала паяльника порой становится достаточно сложным делом, так как не всегда можно подобрать подходящие для этого средства и инструменты. Губка для паяльника – действенный способ, который поможет очистить нагар и прочие проблемные места. Она не представляет собой инструмент для абразивной очистки, так что избавиться от оксидов и прочих химических пленок будет сложно – губка для очистки жала паяльника оказывается попросту не предназначенной для этого, здесь потребуются дополнительные химические вещества. Но если речь идет о нагаре, налипших посторонних частицах, а также прочих подобных вещах, изделие справится с поставленными задачами. В статье разберем принципы работы с губками, а также другие альтернативы очистки жала паяльника от окислов. А как вы справляетесь с этой задачей? В комментариях расскажите о этом.

Читать статью: https://vk.com/wall-51126445_35710

#article #электроника #пайка #схемотехника
Если для прекрасной половины человечества слово паяльник это пустой ничего не значащий предмет, то для мужчин это прибор, который спасает их в любой жизненной ситуации, особенно при проведении несложных ремонтных работ с радиоэлектроникой. Можно ли в домашних условиях сделать паяльник на 12 Вольт своими руками. Если немного дружите с физикой и у вас имеется звание «мастер на все руки», тогда сборка простейшего примитивного низковольтного паяльника будет вам под силу. Давайте рассмотрим один из немногих вариантов, которые доступны любому из вас.

Читать статью: https://vk.com/wall-51126445_35973

#article #электроника #пайка #схемотехника
Во время пайки как у специалистов, так и у новичков может возникать ситуация, когда к жалу паяльника не прилипает олово. Подобная проблема мешает проводить любые дальнейшие процедуры по спаиванию деталей и требует немедленного устранения. Причина может крыться как в самом припое, так и в жале, условиях работы, недостаточной подготовке и многих других вещах. Для того чтобы разобраться во всем этом, нужен опыт. В статье рассматриваются основные причины данной проблемы.

Читать полностью: https://vk.com/wall-51126445_36039

#article #электроника #пайка #схемотехника
Паяльник с терморегулятором стал необходимостью для тех мастеров, которым приходится часто менять режимы пайки. Если нужно работать с различными инструментами, это не столь удобно, как выполнять все процедуры одним паяльником. Ситуация касается и количества инструментов для покупки. Конечно, неплохо бы иметь в арсенале несколько устройств, выполняющих одну и ту же функцию, но с разной максимальной температурой разогрева, это образовало бы запас на случай поломки. Но если рассматривать ситуацию с экономической точки зрения, выбрать паяльник с терморегулятором намного разумнее.

Читать полностью: https://vk.com/wall-51126445_36106

#article #электроника #пайка #схемотехника
Активатор жала паяльника служит для безопасной очистки поверхности металла. Во время постоянной работы происходят ситуации, которые приводят к загрязнению. При перегреве наконечника припой и флюс образуют нагар на жале. Также появляются окисляющая пленка, грязь и прочие виды загрязнений, мешающие дальнейшей работе. Все подробности работы с активатором жала паяльника рассмотрены в прикрепленной статье. А чем вы пользуетесь при очистке жала паяльника? Напишите в комментарии.

Читать: https://vk.com/wall-51126445_36135

#article #электроника #пайка #схемотехника
[1] Обучающее видео по дуговой сварке
[2] Дуговая сварка (учебный фильм)
[3] Аттестация сварщиков, экзамен
[4] Сварка и резка металлов
[5] Конденсаторная сварка
[6] Электродуговая сварка
[7] Сварка давлением
[8] Виды сварки в строительстве
[9] Коррозия сварных соединений
[10] Сварка плавлением

Смотреть: https://vk.com/wall-51126445_39621

#сварка #пайка #строительство #техника
❤‍🔥1👍1
This media is not supported in your browser
VIEW IN TELEGRAM
В древние времена среди металлов наибольшим спросом пользовалась медь. Её добывали из россыпей и плавили из руды. Зародилась медная металлургия в Анатолии, а потом постепенно стала распространяться по Евразии. Самым древним сплавом является мышьяковистая медь, которую получали из золотистого мышьяковистого минерала аурипигмента и смеси медной руды еще в IV тыс. до н.э. Во II тыс. до н.э. на смену мышьяковистой меди пришла оловянная бронза, которая на Кикладских островах (Греция) была известна уже в III тыс. до н.э. В гончарных мастерских происходила плавка металлов, в процессе которой удавалось обнаружить сплавы с разными температурами плавления и легкоплавкие из них использовались в качестве припоя.
Результаты археологических раскопок позволяют утверждать, что пайка как средство соединения металлов известна человеку не мене пяти тысячелетий. В 1927-1928 гг. археолог Леонард Вуллей при раскопках города Ура на Евфрате обнаружил гробницу царицы Шуб-ат с золотыми сосудами, ручки которых были припаяны серебряно-золотым сплавом. Всё это относится к 3500 году до н.э. #факты #пайка #металлы #железо #химия #научные_фильмы #gif

💡 Physics.Math.Code
👍98🔥159
💥 Импульсная аргонодуговая сварка — это сварка алюминия и других металлов в импульсном режиме. 🔥

При импульсной сварке напряжение и сила тока изменяются в ритме частоты импульсов между нижним и верхним значением импульса. Чем выше частота, тем уже будет дуга и меньше размер чешуек (зерен) шва. Чем частота ниже, тем проще контролировать сварочную ванну, особенно это удобно при сварке в неудобных положениях.

Высокий ток импульсов обеспечивает провар основного металла и формирование точечной сварочной ванны. Под действием более слабого базового тока ванна начинает остывать, пока следующий импульс снова не расплавит ее.

К преимуществам отнесем то, что при сварке на частотах до 10 Гц линейная скорость ручной сварки сильно меньше, что даёт оператору (сварщику) больше возможностей для контроля сварочной ванны и качества подачи присадочного материала(при необходимости).
К недостаткам импульсного TIG режима можно отнести невысокую скорость и мерцание дуги на низких частотах сварки. #физика #электротехника #сварка #пайка #научные_фильмы #physics #химия

💡 Physics.Math.Code
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍587🔥5❤‍🔥21
Media is too big
VIEW IN TELEGRAM
🔥 Spot-сварка — это соединение металлических листов и конструкций под местным воздействием электрического тока и нагрева материала. Плавление металла происходит на участках, которых касаются электроды. Допустимая толщина свариваемого металла может быть от 0,5 до 8 мм, а при использовании больших промышленных аппаратов до 30 мм.

Первым в мире точечную контактную сварку применил и запатентовал Уильям Томсон (лорд Кельвин). Поэтому годом появления этого метода считается 1856, а лорд Кельвин ее непосредственным праотцом. Прогресс в данной отрасли наметился к концу 19 века, когда все тот же Томсон испытал и внедрил в работу метод стыковой сварки.

В это время в России разработки нового способа качественного и удобного метода сваривания металлических конструкций также велись интенсивно. Результатом стало создание шовной/ роликовой сварки в качестве альтернативы точечной. К середине 20 века в промышленное производство были запущены первые образцы, а затем налажен и серийный выпуск аппаратуры для контактной сварки.

Основная сфера применения – автомобилестроение, например сварка кузовных узлов, кабин автомобилей. Также она применяется в самолетостроении при изготовление приборов, электронных ламп, не обходится без SPOT-сварки и производство реактивных двигателей, обшивка вагонов. Для бытовых целей такая сварка тоже подходит, например, для создания изделий, таких, как металлическая посуда, спортивный инвентарь, изготовление и приварка декоративной облицовки и т.п.
#электричество #физика #physics #сварка #пайка #опыты #эксперименты #техника

💡 Physics.Math.Code // @physics_lib
👍78🔥2264❤‍🔥2🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍118🔥2686❤‍🔥6😱5🤔3🤷‍♀2
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍10118🔥146❤‍🔥31🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Лазерная сварка с разной формой луча

Лазерная сварка металла — это удобный и эффективный инструмент, который используется в различных сферах, от строительной до промышленной.
Увеличить эффективность лазерной сварки помогает функция выбора формы луча. Сейчас на рынке предоставлены модели лазерных голов, позволяющие оператору выбирать из 6-8 различных форм. Каждая из них оптимально подходит под определенные задачи — сварка труб, создание широкого и прочного шва, проникающая сварка.

Лазерная сварка — сварка с использованием лазера в качестве энергетического источника. Лазерная сварка применяется для сварки радиоэлектронике и электронной технике, она позволяет материалы с толщинами от нескольких микрометров до десятков миллиметров. Сущность лазерного процесса сварки состоит в следующем: лазерное излучение направляется в фокусирующую систему, где фокусируется в пучок меньшего сечения и попадает на свариваемые детали, где частично отражается, частично проникает внутрь материала, где поглощается, нагревает и расплавляет металл, формируя сварной шов.

💎 Лазерная сварка появилась после изобретения Н. Г. Басовым, А. М. Прохоровым, Х. Таунсом в 60-е годы XX века лазеров, созданием мощных лазерных установок непрерывного и импульсного действия. К 2019 г. разработан метод сварки стекла с металлом, при помощи пикосекундного лазера. #физика #механика #physics #science #сварка #пайка #наука #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥95👍3712😱93🤩2🫡1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⛓️‍💥 Какие только технологии не применяли в СССР

Холодная сварка — сварка давлением при значительной пластической деформации зоны соединения без нагрева свариваемых частей внешними источниками тепла.
Первый известный случай холодной сварки давлением датируется 700 г. до н. э. (поздний бронзовый век, Британия). Используемым металлом было золото, а сваренные данным способом золотые шкатулки были найдены во время археологических раскопок.

Первым научным экспериментом с использованием холодной сварки является опыт, продемонстрированный 29 апреля 1724 года Ж. И. Дезагюлье в Королевском научном обществе (Англия). Два свинцовых шара (первый из которых весил 1 фунт, а второй — 2 фунта), с которых были срезаны шаровые сегменты по 3/4 дюйма , были руками спрессованы с одновременным скручиванием. Оказалось, что в результате они соединились. Шары пристали друг к другу так прочно, что поддерживаемый рукой верхний однофунтовый шар отсоединялся от нижнего лишь при нагрузке более 16 фунтов. При осмотре соприкасающихся поверхностей оказалось, что фактическая площадь их сварного соединения не превышала площади круга диаметром в 1/10 дюйма.

На практике этот метод сварки был использован во время Второй мировой войны в Германии для соединения деталей из алюминиевых сплавов при изготовлении авиационных двигателей. В СССР пионерами внедрения холодной сварки были К. К. Хренов (Киев, Институт сварки им. О. Е. Патона) и И. Б. Баранов (Ленинград, завод «Электрик»), а затем ВНИИЭСО (ныне Институт сварки России).

Холодная сварка является сложным физико-химическим процессом, протекающим только при интенсивной пластической деформации в зоне соединения. Роль деформации при холодной сварке заключается в разрушении оксидных пленок, вытеснении их из зоны соединения и сближении свариваемых поверхностей на межатомное расстояние. Необходимое для сварки давление составляет, например, для изделий из алюминия — 300...600 МПа. #физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
🔥90👍58224🤯31🤨1
Media is too big
VIEW IN TELEGRAM
🔥 Мартенсит — это очень твёрдая форма кристаллической структуры стали. Он назван в честь немецкого металлурга Адольфа Мартенса. По аналогии этот термин может также относиться к любой кристаллической структуре, которая образуется в результате бездиффузионного превращения.

Мартенсит образуется в углеродистых сталях при быстром охлаждении (закалке) аустенитной формы железа с такой высокой скоростью, что атомы углерода не успевают диффундировать из кристаллической структуры в достаточном количестве, чтобы образовать цементит (Fe₃C). Аустенит — это гамма-фаза железа (γ-Fe), твёрдый раствор железа и легирующих элементов. В результате закалки гранецентрированный кубический аустенит превращается в сильно напряжённую объёмно-центрированную тетрагональную форму, называемую мартенситом, которая перенасыщенауглеродом. Возникающие в результате деформации сдвига создают большое количество дислокаций, которые являются основным механизмом упрочнения стали. Наибольшая твёрдость перлитной стали составляет 400 единиц Бринелля, в то время как твёрдость мартенсита может достигать 700 единиц Бринелля.

Бездеффузионные превращения — это превращения, не требующие перераспределения компонентов. При таком превращении скорость роста кристалла определяется скоростью перемещения границы раздела фаз. Бездеффузионные превращения происходят в чистых металлах, в стехиометрических химических соединениях и других материалах.

[diffusionless transformation] — фазовое превращение при котором атомы упорядоченно кооперативно перемещаются (сдвигаются) на растояния меньше межатомных без обмена атомов местами так, что соседи любого атома в исходной фазе остаются его соседями в новой мартенситной фазе. Часто бездиффузионное превращение называют сдвиговым превращением. К бездиффузионным превращениям относятся мартенситные превращения.

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥54👍5015🤔5🗿2❤‍🔥1🤩1🌚1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Сварка под слоем флюса — разновидность дуговой сварки, при которой процесс проходит в присутствии гранулированного или порошкообразного флюса. Флюс защищает зону сварки от воздействия воздуха и окисления, а также препятствует разбрызгиванию металла.

Сварочная проволока подаётся на детали через специальное устройство (горелку). Флюс, насыпанный вокруг и над местом сварки, плавится и формирует защитную ванну. По мере движения сварочной головки флюс покрывает дугу и формирует расплавленный металл. Флюс сплавляется, взаимодействует с металлом, очищает его и угнетает образование вредных газов и оксидов. После прохождения участка сварки остывший флюс в виде шлака удаляется с поверхности шва.

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86🔥34256😎4🆒3🌚1
Media is too big
VIEW IN TELEGRAM
Как сделать сварочный аппарат из карандаша и лезвия

Принцип работы: графитовый стержень на конце плюсового провода становится одним из контактов сети, минусовой контакт цепи закрепляется на свариваемой детали и также является токопроводящим. Когда стержень соприкасается с деталью, цепь замыкается, и на конце электрода возникает электрическая дуга.
Важно: провода лучше использовать покороче, так как с ростом длины растёт и их сопротивление, и мощности батарейки может не хватить на то, чтобы преодолеть это сопротивление. Графитовый стержень в процессе сварки сильно раскаляется, поэтому держать его следует плоскогубцами.

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥82👍24194🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍4923🤔7🔥4🙈1