Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Линейные электродвигатели актуаторов — это устройства, которые преобразуют энергию в механическое движение в линейном направлении. Они состоят из двигателя, за которым следует шестерня или гайка, которые передают вращательное движение в линейную ось.

Некоторые области применения линейных актуаторов:
▪️Медицинская техника. Управление движением роботов-хирургов, диагностического оборудования и других медицинских устройств.
▪️Производственная отрасль. Автоматизация процессов перемещения материалов, сборки и упаковки продуктов.
▪️Автомобильная промышленность. Управление дверями, окнами и другими актуаторами в автомобилях.
▪️Бытовая техника. Управление механическими устройствами, такими как робот-пылесос или автоматическая кухонная станция.

На видео эмалированный провод, поэтому он не войдет в контакт с другими металлами, пока вы не снимете эмаль с концов. Здесь мы также наблюдаем фрезерный станок, токарный станок, промышленную вакуумную камеру. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

💡 Physics.Math.Code // @physics_lib
👍7618😍63🔥31🤔1🤩1
Media is too big
VIEW IN TELEGRAM
⚙️ Производство роторных двигателей: мощь в компактном корпусе

Производство роторных двигателей связано с некоторыми сложностями из-за высоких требований к геометрической точности изготовления деталей. Для производства требуется высокотехнологичное и высокоточное оборудование, в частности станки, способные перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Некоторые компании, которые занимались производством роторных двигателей:

▪️Mazda. Инженеры фирмы создали роторно-поршневый двигатель «Renesis», который решил основные проблемы таких двигателей — токсичность выхлопа и неэкономичность.

▪️ ВАЗ. В СССР на заводе появилось конструкторское бюро, которое разрабатывало исключительно роторно-поршневые двигатели. В 1976 году возник двигатель ВАЗ-311.

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рёло, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде (возможны и другие формы ротора и цилиндра).

Вот вам и ответ вопрос:
Где и зачем нужна математика человеку?

#физика #механика #термодинамика #техника #эксперименты #physics #видеоуроки #научные_фильмы #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍99🔥3615🤝421
This media is not supported in your browser
VIEW IN TELEGRAM
🔋 Уоррен де ла Рю изобрёл электролитический конденсатор в 1866 году. В этих устройствах в качестве диэлектрика используется бумага, пропитанная электролитом, что позволяет создавать компактные конструкции и увеличивать значения ёмкости.

Некоторые другие этапы изобретения электролитических конденсаторов:

▪️ Чарльз Поллак в 1890-х годах открыл, что слой оксида на алюминиевом аноде проявляет стабильность в нейтральной или щелочной среде, и в 1897 году получил патент на алюминиевый электролитический конденсатор с бурой.

▪️ Сэмюэль Рубен в 1925 году запатентовал предка современного электролитического конденсатора. Он поместил гелеобразный электролит между анодом с оксидным покрытием и второй пластиной из металлической фольги, что избавило от необходимости использовать контейнер, наполненный водой. В результате получился «сухой» электролитический конденсатор.

▪️ Уильям Дубилье в 1928 году подал первый патент на электролитические конденсаторы и начал первое крупное коммерческое производство в 1931 году.

#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥201361
Media is too big
VIEW IN TELEGRAM
📈📉Опыты по физике: Плавление, кристаллизация, испарение, конденсация

Плавление и испарение — признаки изменения агрегатного состояния кристаллического вещества. Эти процессы связаны с переходом вещества из твёрдого состояния в жидкое (плавление) или из жидкого состояния в газообразное (испарение).

▪️ Плавление — переход кристаллического вещества из твёрдого состояния в жидкое. Плавление происходит при определённой температуре — температуре плавления. Каждое вещество имеет свою температуру плавления. Сопровождается поглощением энергии, так как к веществу необходимо подводить теплоту. Внутренняя энергия вещества увеличивается. Температура вещества не изменяется до тех пор, пока всё оно не расплавится.

▪️ Испарение — переход вещества из жидкого состояния в газообразное, который происходит с поверхности жидкости. Происходит при любой температуре. Скорость испарения зависит от природы жидкости, температуры, площади поверхности и наличия или отсутствия движения воздуха над поверхностью. Улетевшие молекулы уносят с собой энергию, поэтому при испарении происходит уменьшение температуры жидкости (охлаждение).

▪️ Кристаллизация — процесс образования кристаллов из газов, растворов, расплавов или стёкол. Также кристаллизацией называют образование кристаллов с данной структурой из кристаллов иной структуры (полиморфные превращения) или переход из жидкого состояния в твёрдое кристаллическое. Кристаллизация начинается при охлаждении жидкости до определённой температуры — температуры кристаллизации, которая равна температуре плавления. Во время процесса температура не меняется. Зарождение центров кристаллизации — образование кластеров с упорядоченностью, характерной для кристалла. Рост кристаллов — увеличение размера частиц за счёт присоединения атомов или молекул из жидкости. #физика #термодинамика #мкт #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science

Изохорный процесс

🔥 Термостат

💧 Капля воды падающая на горячий металл 💥в Slow motion

💧 Эффект Лейденфроста

🚀 Что будет, если добавить жидкий газ в бутылку с водой

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
37👍19🔥6🤩2
⚡️ 🔩 Анодирование деталей позволяет изменить их цвет. Эта обработка навсегда окрашивает металл без необходимости наносить краску или гальваническое покрытие.

Существует два метода анодирования:

▪️ Электрическое анодирование. Для получения единого, равномерно тонированного цвета используется постоянный ток не менее 80 вольт и от 1 до 3 ампер. Титановый кусок помещают в ванну с проводящей жидкостью, соединённой с источником питания полосой проводящего металла. Ток применяют к металлу до получения желаемого цвета. Цвет меняется в зависимости от силы тока и используемого напряжения.

▪️ Тепловое анодирование. Технология идентична электрическому анодированию, но реакция запускается не электрическим током, а теплом. Тепловое анодирование менее точно, чем электрический метод, но оно даёт более сложные результаты, например, градиенты или разноцветные эффекты. Первый шаг — полностью очистить и высушить изделие, затем происходит непосредственное обжигание металла, пока он не изменит цвет. С помощью приближения или удаления пламени можно менять цвета и создавать узоры.

Титан – современный легкий, прочный и коррозионно-стойкий конструкционный материал. Относится к переходным металлам. Он устойчив во многих средах, при комнатной температуре, на воздухе - до 550 °C. Стойкость титана обусловлена присутствием на поверхности тонкой, но плотной оксидной пленки. Толщина ее достигает 5-20 нм, что чуть больше, чем на алюминии, но на титане она гораздо прочнее. Естественная пленка на титане преимущественно состоит из рутила и анатаза. Повысить толщину и плотность естественной оксидной пленки на титане можно путем анодирования (анодного оксидирования). После анодирования можно также добиться повышения микротвердости поверхности титана, износостойкости, жаростойкости, жаропрочности, усталостной прочности и стойкости к схватыванию. После анодирования повышаются антифрикционные свойства поверхности деталей, предотвращается контактная коррозия при соприкосновении титана с алюминием, магнием, кадмиевыми и цинковыми покрытиями. Также анодная плёнка, благодаря пористой структуре, хорошо зарекомендовала себя как подслой для нанесения лакокрасочных материалов, клеев, герметиков, смазок. Высокая коррозионная стойкость в физиологической среде анодированного титана позволяет использовать данный материал для производства имплантов и протезов.
#видеоуроки #physics #физика #опыты #электродинамика #анодирование #химия #эксперименты #научные_фильмы #электролиз

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40🔥24135🤩2😍2👻1🙈1
Media is too big
VIEW IN TELEGRAM
⚡️ Уравнения Максвелла

К первой половине 19 века понимание электромагнетизма улучшилось благодаря многочисленным экспериментам и теоретическим работам. В 1780-х годах Шарль-Огюстен де Кулон установил свой закон электростатики. В 1825 году Андре-Мари Ампер опубликовал свой закон силы. В 1831 году Майкл Фарадей открыл электромагнитную индукцию в ходе своих экспериментов и предложил силовые линии для ее описания. В 1834 году Эмиль Ленц решил проблему направления индукции, а Франц Эрнст Нейман записал уравнение для расчета индуцированной силы при изменении магнитного потока. Однако эти экспериментальные результаты и правила были плохо организованы и иногда сбивали ученых с толку. Требовалось всеобъемлющее изложение принципов электродинамики.

Эта работа была выполнена Джеймсом К. Максвеллом на основе серии статей, опубликованных с 1850-х по 1870-е годы.

В 1850-х годах Максвелл работал в Кембриджском университете, где на него произвела впечатление концепция силовых линий Фарадея. Фарадей создал эту концепцию под впечатлением от Роджера Босковича, физика, который также повлиял на работу Максвелла. Позже, Оливер Хевисайд изучил Трактат Максвелла по электричеству и магнетизму и использовал векторное исчисление, чтобы синтезировать более 20 уравнений Максвелла в 4 узнаваемых, которые используют современные физики. Уравнения Максвелла также вдохновили Альберта Эйнштейна на разработку специальной теории относительности.

Экспериментальное доказательство уравнений Максвелла было продемонстрировано Генрихом Герцем в серии экспериментов в 1890-х годах. После этого уравнения Максвелла были полностью приняты учеными. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
66👍37🔥131🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🌪 Теория относительности — это комплекс из двух теорий, которые описывают свойства пространства, времени и гравитации. Они были предложены Альбертом Эйнштейном в начале XX века. Смотреть полный фильм: 🕰 Что такое теория относительности [20 мин фильм]

▪️ Специальная теория относительности. Описывает поведение объектов, которые движутся с постоянной скоростью. Теория утверждает, что время и пространство не являются абсолютно фиксированными для всех наблюдателей — они могут изменяться в зависимости от скорости объекта. Некоторые принципы специальной теории относительности:
— Принцип относительности — законы физики одинаковы для всех наблюдателей, независимо от того, находятся ли они в покое или движутся с постоянной скоростью относительно других объектов.
— Постоянство скорости света — скорость света всегда одинаковая (примерно 300 000 км/с) и не зависит от того, как быстро движется источник света или наблюдатель.

▫️ Общая теория относительности. Расширяет идеи специальной теории относительности и объясняет гравитацию. Теория утверждает, что гравитация — это не сила, а искривление пространства-времени, вызванное массой и энергией объектов. Некоторые принципы общей теории относительности:
— Эквивалентность гравитации и ускорения — невозможно отличить действие гравитации от ускоренного движения.
— Гравитационное замедление времени — часы идут медленнее вблизи массивных объектов, например, рядом с чёрной дырой время почти останавливается. #физика #теория_относительности #оптика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #свет #волны #СТО #ОТО #science

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 1]

👨🏻‍💻 Видеолекции по теории поля и СТО [Часть 2]

📚 3 книги по теории относительности

☀️ Физика света / The Physics of Light [2014]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤‍🔥39👍2418🔥75🤨4🤔3🆒2
Media is too big
VIEW IN TELEGRAM
О свойствах параболы

▪️ Вершина параболы — точка, в которой она меняет направление (самая высокая или низкая точка). Координаты вершины можно найти по формуле: x = −b / (2a), y = f(x). Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

▪️ Парабола (греч. παραβολή — приближение) — плоская кривая, один из типов конических сечений.

▪️ Античные математики определяли параболу как результат пересечения кругового конуса с плоскостью, которая не проходит через вершину конуса и параллельна его образующей (см. рисунок). В аналитической геометрии удобнее эквивалентное определение: парабола есть геометрическое место точек на плоскости, для которых расстояние до заданной точки (фокуса) равно расстоянию до заданной прямой (директрисы). Если фокус лежит на директрисе, то парабола вырождается в прямую.

▪️Каноническое уравнение параболы в прямоугольной системе координат: y² = 2⋅p⋅x, где p — фокальный параметр, равный расстоянию от фокуса до директрисы

▪️В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена: A⋅x² + B⋅x⋅y + C⋅y² + D⋅x + E⋅y + F = 0

▪️Парабола в полярной системе координат (ρ,ϑ) с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением ρ⋅(1 - cos(ϑ)) = p, где p — фокальный параметр

▪️Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.

▪️Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе. Множество всех точек, из которых парабола видна под прямым углом, есть директриса. Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.

▪️Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.

▪️Траектория фокуса параболы, катящейся по прямой, есть цепная линия

▪️Описанная окружность треугольника, описанного около параболы, проходит через её фокус, а точка пересечения высот лежит на её директрисе

Вывод уравнения формы цепной линии. Физика нити, имеющей массу

💫 Математика эллипса: всё, что нужно знать

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
🔥50👍2015❤‍🔥4🤯3😍3🤩2🤔1😨1
This media is not supported in your browser
VIEW IN TELEGRAM
🐝 «Nano Bee». Двигатель объемом 0,006 см³

Как вам двигатель, который может расположиться на монетке целиком. Да, работающий дизельный двигатель! Главный «гений» этих механизмов – изобретатель Рональд Валентайн, инженерный вундеркинд, обучавшийся в Германии и начавший делать самые маленькие двигатели внутреннего сгорания в мире. Своей жизненной целью Рональд ставит доказать всем, что несмотря на то, что его двигатели очень малы, они на самом деле работают. Все двигатели Валентайна собраны полностью вручную, на станке с ЧПУ ни одна деталь не создавалась. Это высококачественные маленькие дизельные звери.

📷 Смотреть фотографии мини-ДВС

Самый маленький из них - это дизельный двигатель "Nano Bee" размером в 22 мм в длину, с диаметром поршня 2 мм, ходом – 3 мм и объемом двигателя 0,006 куб. см . "Nano Bee" имеет впуск и выпуск, диаметром по 3 мм, и общий вес всего 3 грамма. Тем не менее, двигатель раскручивает 32-мм винт до 12800 оборотов в минуту! Крис Валентайн сделал "Nano Bee" из алюминия и стального прутка, допуски изготовления потрясают - до одной десятитысячной сантиметра. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11631👍267🤔5🥰3🌚1😈1
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.

Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую ​​линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.

💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
43👍24🔥64😱2❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🪜 Задача по физике для наших подписчиков

Обе веревочные лестницы были выпущены в одно и то же время и при одинаковых условиях. Почему конец одной из них прилетел раньше?

#физика #physics #механика #gif #опыты #видеоуроки #научные_фильмы #эксперименты

💡 Physics.Math.Code // @physics_lib
🤔33👍2812🔥9❤‍🔥2🤯2🆒1
Media is too big
VIEW IN TELEGRAM
⚙️ Моторист рассказывает о Volga Siber 🚘

ГАЗ Volga Siber (рус. Волга Сайбер) — российский среднеразмерный седан, выпускавшийся с 2008 по 2010 год. Представлен российской компанией «Группа ГАЗ» на выставке «Интеравто-2007» в Москве 29 августа 2007 года как GAZ Siber. В дальнейшем торговое название модели было изменено на Volga Siber. В 2008—2010 годах было выпущено лишь несколько небольших партий. Внешне от американских автомобилей-доноров Volga Siber отличается бамперами, дизайном радиаторной решётки и светотехникой. Автомобиль адаптирован к эксплуатации в российских условиях, в частности, повышена жёсткость подвески, улучшена управляемость, используется крепёж только с метрической, а не дюймовой, резьбой. Из явных недостатков в конструкции в российских условиях можно выделить малый клиренс — он составляет всего 140 мм.

Модель планировалось выпускать в двух комплектациях: Comfort (c двигателями 2,0 и 2,4) и Lux (двигатель 2,4 л). Имелись и планы по установке 2,7-литрового V6. Тем не менее в серийное производство пошли только 2,4-литровые модификации с четырёхступенчатой автоматической трансмиссией (АКПП). С начала апреля 2010 года появилась версия Volga Siber с 2,4-литровым двигателем и пятиступенчатой механической КПП (МКПП) NV-T350 производства New Venture Gear. Согласно информации производителя, такая модификация была создана с учётом пожеланий потенциальных покупателей. Для работы с МКПП двигатель седана доработали — в частности, повысили крутящий момент на низких оборотах. В результате базовой комплектацией Volga Siber стало исполнение Comfort с четырёхцилиндровым двигателем объёмом 2,429 л. с клапанным механизмом DOHC (143 л. с., 210 Н·м) и пятиступенчатой МКПП. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции

🐝 «Nano Bee». Двигатель объемом 0,006 см³

Самый маленький четырехцилиндровый ДВС в мире

Звёздообразный или радиальный двигатель

⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.

⚙️ Роторный двигатель

💥💨 Как работает двухтактный двигатель скутера

⚙️ Сравнение моторных масел

⚙️ Авиационный гироскоп


💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2923👍17😱6🌚5👏4🤯3🆒2🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Перед ударом молнии в землю в атмосфере происходят физические процессы, связанные с образованием канала молнии, ионизацией воздуха и ролью электрического поля. Эти процессы также влияют на возникновение грома — звукового явления, сопровождающего разряд молнии. Перед основной вспышкой молнии формируется ступенчатый лидер — узкий канал ионизированного воздуха, который движется от облака к земле. Некоторые особенности процесса:
1. Электроны под действием разности потенциалов начинают двигаться к земле, сталкиваясь с молекулами воздуха, ионизируя их.
2. Из-за ионизации воздуха электропроводность в зоне траектории лидера возрастает, что создаёт путь для основного разряда.
3. Ионизация происходит неравномерно, поэтому лидер может разветвляться.

В сильном электрическом поле вблизи центра лидера происходит интенсивная ионизация атомов и молекул воздуха. Это происходит за счёт:
▪️бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (ударная ионизация);
▪️поглощения атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация).

Для возникновения молнии необходимо, чтобы в относительно малом объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~1 МВ/м), а в значительной части облака — поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~0,1–0,2 МВ/м). Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землёй: напряжённость электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряжённости больше 2500 кВ/м.

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Некоторые особенности механизма:
1. Вдоль пути разряда молнии возникает внезапное нагревание и сильное расширение воздуха, похожее на сильный взрыв.
2. Это расширение вызывает ударную волну, перемещающуюся в атмосфере и достигающую земной поверхности.
3. Обычно гром воспринимается не как отдельный резкий звук, а как ряд последовательных ударов — раскатов, которые отличаются интенсивностью и продолжаются по несколько секунд.

⚡️ Уравнения Максвелла

📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

⚡️ Лучшая подборка экспериментов, связанных с током [МИФИ Гервидс Валериан Иванович]

🧊 Кварц используют как источник времени в кварцевых часах 📟

⚡️ Откуда берется трехфазный ток?

⚡️ Ручной генератор для зарядки в любых условиях

#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1165118🔥9🤯1🆒1
Media is too big
VIEW IN TELEGRAM
💡 Тиристор — полупроводниковый прибор, предназначенный для однонаправленного преобразования тока (ток пропускается только в одну сторону). Имеет два устойчивых состояния:
«закрытое» — состояние низкой проводимости;
«открытое» — состояние высокой проводимости.
Назначение тиристора — выполнение функции электронного выключателя (ключа). Особенность — невозможность самостоятельного переключения в закрытое состояние. Тиристор состоит из четырёх чередующихся слоёв (структура p-n-p-n). Внутри прибора находятся три p-n-перехода, которые соединены последовательно.
У тиристора есть три вывода: анод, катод и управляющий электрод (его ещё называют затвором).

Принцип работы: Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора).
Особенности работы:
▪️После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала.
▪️Тиристор остаётся в открытом состоянии, пока протекающий через него ток превышает некоторую величину, называемую током удержания.
▪️Если ток снизится, тиристор автоматически закроется.

Тиристоры подразделяются, главным образом, по способу управления и проводимости. Например:
▪️Диодные (динисторы) — не содержат управляющих электродов, управляются напряжением, приложенным между основными электродами.
▪️Триодные (тринисторы) — содержат один управляющий электрод. В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду.
▪️Симметричные (симисторы) — способны проводить ток в обоих направлениях.

Применение: Тиристоры используются в схемах, где требуется надёжное включение и отключение тока, например в регуляторах мощности, фазовых переключателях и источниках питания. Также тиристоры применяются в ключевых устройствах, например, в силовом электроприводе.
#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7618🔥126🥰2🌚1👻1
Media is too big
VIEW IN TELEGRAM
Симистор (симметричный триодный тиристор, триак) — полупроводниковый прибор, разновидность тиристоров, используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ).

Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).

Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.

Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.

Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.

Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.

Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6827🔥135👻1
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.

Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую ​​линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.

💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics

💡 Physics.Math.Code // @physics_lib
👍5222🔥6❤‍🔥21
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.

Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.

Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.

Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
24👍21🔥10👻2🤯1
This media is not supported in your browser
VIEW IN TELEGRAM
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

Эволюция технологий пайки в электронной промышленности ознаменовалась кардинальным переходом от традиционных припоев на основе свинца к экологически безопасным бессвинцовым альтернативам. В течение многих лет пайка на основе свинца, в основном с использованием сплавов олово-свинец, была отраслевым стандартом, ценившимся за доступность и превосходные физические свойства. Однако растущая осведомленность об опасностях для окружающей среды и здоровья, связанных со свинцом, привела к ужесточению правил, что побудило к исследованию и внедрению решений для бессвинцовой пайки. Припой на основе свинца относится к типу припоя, который содержит свинец в качестве одного из основных компонентов. Наиболее распространенной рецептурой припоя на основе свинца является сплав олово-свинец (Sn-Pb), в котором соотношение олова и свинца обычно составляет около 60:40. Это определенное соотношение часто называют эвтектическим составом, где сплав имеет определенную температуру плавления, что позволяет ему напрямую переходить из твердого состояния в жидкое и наоборот.

Бессвинцовый припой — это тип припоя, который не содержит свинца в качестве одного из своих основных компонентов. Переход к бессвинцовой пайке вызван проблемами окружающей среды и здоровья, связанными с использованием припоев на основе свинца. Различные бессвинцовые припои были разработаны в качестве альтернативы традиционному припою олово-свинец (Sn-Pb) с целью сохранить рабочие характеристики и надежность паяных соединений, одновременно устраняя токсичное воздействие свинца. Температура плавления бессвинцового припоя может находиться в диапазоне от 50 до 200 °C и выше. Для достаточной смачивающей способности бессвинцового припоя требуется примерно 2% флюса по массе.

Доступно несколько бессвинцовых припоев, и производители могут выбрать тот, который лучше всего соответствует их конкретным требованиям. Некоторые распространенные бессвинцовые припои включают в себя:
▪️ Олово-Висмут (Sn-Bi): Этот сплав имеет более низкую температуру плавления по сравнению с другими бессвинцовыми альтернативами, что делает его пригодным для применений, где желательны более низкие температуры пайки.
▪️ Олово-Серебро (Sn-Ag): Этот сплав без меди является еще одним популярным бессвинцовым сплавом. Он обеспечивает хорошую стойкость к термической усталости и широко используется в производстве электроники.
▪️ Олово-Цинк (Sn-Zn): Этот сплав используется в некоторых составах бессвинцовых припоев, предлагая альтернативу без использования серебра или меди.

#пайка #химия #схемотехника #физика #physics #видеоуроки #научные_фильмы #опыты

💡 Physics.Math.Code // @physics_lib
👍4923🤔7🔥4🙈1
💡 Физика вокруг нас всегда. И от знания законов физики может зависеть ваша жизнь. Наглядно рассмотрим пример, в котором кроется не только простейшая школьная механика, но и сложная теория колебаний, теория устойчивости дифференциальных уравнений.

⚙️ Правильная развесовка прицепа — залог безопасности движения.

Если вы уложите самые грузные вещи в хвост, то сделаете грубую и, возможно, непоправимую ошибку. При смещении центра тяжести далеко назад прицеп начнет сильно заносить, и этот занос будет развиваться по принципу маятника. Так что погасить это раскачивание очень сложно. Опасность ситуации также в том, что занос может вынести весь автопоезд на встречную полосу со всеми вытекающими последствиями.
#physics #физика #механика #опыты #видеоуроки #научные_фильмы

👨🏻‍💻 Physics.Math.Code // @phjysics_lib
👍6212🔥8💯4🤯1🤝1