📚 6 лучших книг по теории вероятностей и математической статистике
💾 Скачать книги
Для освоения теории вероятностей и математической статистики тренировка в решении задач и выработка интуиции важны не меньше, чем изучение доказательств теорем; большое разнообразие задач по этому предмету затрудняет студентам переход от лекций к экзаменационным задачам, а от них — к практике.
Ввиду того, что предмет этой книги критически важен и для современных приложений (финансовая математика, менеджмент, телекоммуникации, обработка сигналов, биоинформатика), так и для приложений классических (актуарная математика, социология, инженерия), авторы собрали большое количество упражнений, снабженных полными решениями. Эти решения адаптированы к нуждам и умениям учащихся.
Для удобства усвоения текста авторы приводят в книге целый ряд основных математических фактов; кроме того, текст снабжен историческими отступлениями. #подборка #стастика #теория_вероятностей #математика #math
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Для освоения теории вероятностей и математической статистики тренировка в решении задач и выработка интуиции важны не меньше, чем изучение доказательств теорем; большое разнообразие задач по этому предмету затрудняет студентам переход от лекций к экзаменационным задачам, а от них — к практике.
Ввиду того, что предмет этой книги критически важен и для современных приложений (финансовая математика, менеджмент, телекоммуникации, обработка сигналов, биоинформатика), так и для приложений классических (актуарная математика, социология, инженерия), авторы собрали большое количество упражнений, снабженных полными решениями. Эти решения адаптированы к нуждам и умениям учащихся.
Для удобства усвоения текста авторы приводят в книге целый ряд основных математических фактов; кроме того, текст снабжен историческими отступлениями. #подборка #стастика #теория_вероятностей #математика #math
💡 Physics.Math.Code // @physics_lib
👍32❤9🔥9😍4❤🔥2
📚_6_лучших_книг_по_теории_вероятностей_и_математической_статистике.zip
36 MB
📚 6 лучших книг по теории вероятностей и математической статистике
Базовый курс в трёх томах по теории вероятностей и математической статистики (в примерах и задачах). Книги предназначены для начального ознакомления с основами теории вероятностей и математической статистики и развития навыков решения практических задач.
📘 Теория вероятностей и математическая статистика [2008] Кремер
📗 Теория вероятностей и математическая статистика [2005] Кибзун, Наумов
📕 Вероятность и статистика в примерах и задачах [Том 1] Кельберт, Сухов 2007
📔 Вероятность и статистика в примерах и задачах [Том 2] Кельберт, Сухов 2009
📙 Вероятность и статистика в примерах и задачах [Том 3] Кельберт, Сухов 2013
📓 Теория вероятностей и математическая статистика [2004] Гмурман
Для освоения теории вероятностей и математической статистики тренировка в решении задач и выработка интуиции важны не меньше, чем изучение доказательств теорем; большое разнообразие задач по этому предмету затрудняет студентам переход от лекций к экзаменационным задачам, а от них — к практике.
📖 Том 1. Основные понятия теории вероятностей и математической статистики.
Часть А Вероятность
Глава 1. Дискретные пространства элементарных исходов
Глава 2. Непрерывные пространства элементарных исходов
Часть В Основы статистики
Глава 1. Оценивание параметров
Глава 2. Проверка гипотез
Глава 3. Задачи кембриджских «Математических треножников» к курсу «Статистика»
📖 Том 2. Марковские цепи как отправная точка теории случайных процессов и их приложения.
Глава 1. Цепи Маркова с дискретным временем
Глава 2. Цепи Маркова с непрерывным временем
Глава 3. Статистика цепей Маркова с дискретным временем
Приложение I. Андрей Андреевич Марков и его время
Приложение II. Пирсон, Максвелл и другие знаменитые Кембриджские лауреаты: уроки, которые следует усвоить
📖 Том 3. Теория информации и кодирования.
Глава 1. Основные понятия теории информации
Глава 2. Введение в теорию кодирования
Глава 3. Дальнейшие темы из теории кодирования
Глава 4. Дальнейшие темы из теории информации
#математика #статистика #подборка_книг #теория_вероятностей #комбинаторика #math #maths #mathematics
💡 Physics.Math.Code // @physics_lib
Базовый курс в трёх томах по теории вероятностей и математической статистики (в примерах и задачах). Книги предназначены для начального ознакомления с основами теории вероятностей и математической статистики и развития навыков решения практических задач.
📘 Теория вероятностей и математическая статистика [2008] Кремер
📗 Теория вероятностей и математическая статистика [2005] Кибзун, Наумов
📕 Вероятность и статистика в примерах и задачах [Том 1] Кельберт, Сухов 2007
📔 Вероятность и статистика в примерах и задачах [Том 2] Кельберт, Сухов 2009
📙 Вероятность и статистика в примерах и задачах [Том 3] Кельберт, Сухов 2013
📓 Теория вероятностей и математическая статистика [2004] Гмурман
Для освоения теории вероятностей и математической статистики тренировка в решении задач и выработка интуиции важны не меньше, чем изучение доказательств теорем; большое разнообразие задач по этому предмету затрудняет студентам переход от лекций к экзаменационным задачам, а от них — к практике.
📖 Том 1. Основные понятия теории вероятностей и математической статистики.
Часть А Вероятность
Глава 1. Дискретные пространства элементарных исходов
Глава 2. Непрерывные пространства элементарных исходов
Часть В Основы статистики
Глава 1. Оценивание параметров
Глава 2. Проверка гипотез
Глава 3. Задачи кембриджских «Математических треножников» к курсу «Статистика»
📖 Том 2. Марковские цепи как отправная точка теории случайных процессов и их приложения.
Глава 1. Цепи Маркова с дискретным временем
Глава 2. Цепи Маркова с непрерывным временем
Глава 3. Статистика цепей Маркова с дискретным временем
Приложение I. Андрей Андреевич Марков и его время
Приложение II. Пирсон, Максвелл и другие знаменитые Кембриджские лауреаты: уроки, которые следует усвоить
📖 Том 3. Теория информации и кодирования.
Глава 1. Основные понятия теории информации
Глава 2. Введение в теорию кодирования
Глава 3. Дальнейшие темы из теории кодирования
Глава 4. Дальнейшие темы из теории информации
#математика #статистика #подборка_книг #теория_вероятностей #комбинаторика #math #maths #mathematics
💡 Physics.Math.Code // @physics_lib
👍68❤31🔥11❤🔥4⚡2👏2😍2👻1
Media is too big
VIEW IN TELEGRAM
ГАЗ Volga Siber (рус. Волга Сайбер) — российский среднеразмерный седан, выпускавшийся с 2008 по 2010 год. Представлен российской компанией «Группа ГАЗ» на выставке «Интеравто-2007» в Москве 29 августа 2007 года как GAZ Siber. В дальнейшем торговое название модели было изменено на Volga Siber. В 2008—2010 годах было выпущено лишь несколько небольших партий. Внешне от американских автомобилей-доноров Volga Siber отличается бамперами, дизайном радиаторной решётки и светотехникой. Автомобиль адаптирован к эксплуатации в российских условиях, в частности, повышена жёсткость подвески, улучшена управляемость, используется крепёж только с метрической, а не дюймовой, резьбой. Из явных недостатков в конструкции в российских условиях можно выделить малый клиренс — он составляет всего 140 мм.
Модель планировалось выпускать в двух комплектациях: Comfort (c двигателями 2,0 и 2,4) и Lux (двигатель 2,4 л). Имелись и планы по установке 2,7-литрового V6. Тем не менее в серийное производство пошли только 2,4-литровые модификации с четырёхступенчатой автоматической трансмиссией (АКПП). С начала апреля 2010 года появилась версия Volga Siber с 2,4-литровым двигателем и пятиступенчатой механической КПП (МКПП) NV-T350 производства New Venture Gear. Согласно информации производителя, такая модификация была создана с учётом пожеланий потенциальных покупателей. Для работы с МКПП двигатель седана доработали — в частности, повысили крутящий момент на низких оборотах. В результате базовой комплектацией Volga Siber стало исполнение Comfort с четырёхцилиндровым двигателем объёмом 2,429 л. с клапанным механизмом DOHC (143 л. с., 210 Н·м) и пятиступенчатой МКПП. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥30❤23👍18😱6🌚5👏4🤯3🆒2🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
#механика #кинематика #колебания #опыты #физика #механика #physics #science #теория_колебаний #изобретения
〰️ Звуковой резонанс
📚 Курс теоретической механики. В 2 томах [1979] Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.
📚 Подбор книг по теории колебаний, волнам, резонансам [около 90 книг]
📚 Теоретическая физика (в 10 томах) [2001 - 2005] Ландау, Лифшиц
⚠️ Прежде чем читать 10 томов Ландау
🔩 Гаситель вибрации
🌀 Резонанс: частот имеет значение
⚙️ Маятник Капицы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥34👍25❤12❤🔥4🤷♂3😱2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥82👍37❤20😍5❤🔥2😱2👾2⚡1💯1
This media is not supported in your browser
VIEW IN TELEGRAM
#задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔45🙈21🔥13😱10👍9🗿6❤5🌚5🤯4⚡3👏3
This media is not supported in your browser
VIEW IN TELEGRAM
1. Электроны под действием разности потенциалов начинают двигаться к земле, сталкиваясь с молекулами воздуха, ионизируя их.
2. Из-за ионизации воздуха электропроводность в зоне траектории лидера возрастает, что создаёт путь для основного разряда.
3. Ионизация происходит неравномерно, поэтому лидер может разветвляться.
В сильном электрическом поле вблизи центра лидера происходит интенсивная ионизация атомов и молекул воздуха. Это происходит за счёт:
▪️бомбардировки атомов и молекул быстрыми электронами, вылетающими из лидера (ударная ионизация);
▪️поглощения атомами и молекулами фотонов ультрафиолетового излучения, испускаемого лидером (фотоионизация).
Для возникновения молнии необходимо, чтобы в относительно малом объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~1 МВ/м), а в значительной части облака — поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~0,1–0,2 МВ/м). Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землёй: напряжённость электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряжённости больше 2500 кВ/м.
Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Некоторые особенности механизма:
1. Вдоль пути разряда молнии возникает внезапное нагревание и сильное расширение воздуха, похожее на сильный взрыв.
2. Это расширение вызывает ударную волну, перемещающуюся в атмосфере и достигающую земной поверхности.
3. Обычно гром воспринимается не как отдельный резкий звук, а как ряд последовательных ударов — раскатов, которые отличаются интенсивностью и продолжаются по несколько секунд.
📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф
🧊 Кварц используют как источник времени в кварцевых часах 📟
⚡️ Ручной генератор для зарядки в любых условиях
#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍122❤57⚡19🔥10🤯1🆒1
Media is too big
VIEW IN TELEGRAM
Двигатель Стирлинга — тепловая машина, в которой рабочее тело, в виде газа или жидкости, движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года(английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века...
🔧 Читать о принципах работы
#двс #двигатель #механика #физика #термодинамика #техника #опыты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍70🔥34❤21👏12❤🔥5🤓2⚡1🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Попробуйте подумать самостоятельно и написать свой ответ в комментариях. Обсуждаем задачу здесь... ✍🏻
#физика #опыты #эксперименты #наука #science #physics #механика #гидродинамика #видеоуроки #гидростатика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍38❤12✍5🔥3🤯3🤔1
Media is too big
VIEW IN TELEGRAM
«закрытое» — состояние низкой проводимости;
«открытое» — состояние высокой проводимости.
Назначение тиристора — выполнение функции электронного выключателя (ключа). Особенность — невозможность самостоятельного переключения в закрытое состояние. Тиристор состоит из четырёх чередующихся слоёв (структура p-n-p-n). Внутри прибора находятся три p-n-перехода, которые соединены последовательно.
У тиристора есть три вывода: анод, катод и управляющий электрод (его ещё называют затвором).
Принцип работы: Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора).
Особенности работы:
▪️После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала.
▪️Тиристор остаётся в открытом состоянии, пока протекающий через него ток превышает некоторую величину, называемую током удержания.
▪️Если ток снизится, тиристор автоматически закроется.
Тиристоры подразделяются, главным образом, по способу управления и проводимости. Например:
▪️Диодные (динисторы) — не содержат управляющих электродов, управляются напряжением, приложенным между основными электродами.
▪️Триодные (тринисторы) — содержат один управляющий электрод. В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду.
▪️Симметричные (симисторы) — способны проводить ток в обоих направлениях.
Применение: Тиристоры используются в схемах, где требуется надёжное включение и отключение тока, например в регуляторах мощности, фазовых переключателях и источниках питания. Также тиристоры применяются в ключевых устройствах, например, в силовом электроприводе.
#научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍77❤22🔥14⚡6🥰2🌚1👻1
Media is too big
VIEW IN TELEGRAM
Особенность симистора — способность проводить ток в обеих полярностях, в отличие от тиристора, который работает только в одном направлении. Это позволяет использовать симисторы в цепях переменного тока без дополнительной схемы мостового выпрямления. Симистор имеет три вывода: анод, катод и управляющий электрод (Gate).
Симисторы могут быть подключены к нагрузке различными способами, в зависимости от требований схемы:
▪️ Последовательное подключение — включается последовательно с нагрузкой, наиболее распространено для управления мощностью ламп, двигателей или нагревателей.
▪️ Мостовая схема — используется в мостовой конфигурации для управления мощностью в более сложных приложениях.
Принцип работы: Процесс включения симистора начинается с подачи импульса на управляющий электрод (Gate). Когда напряжение достигает определённого порогового значения, структура симистора переходит из состояния блокировки в состояние проводимости. В это время через прибор начинает течь ток.
Особенности симисторов: Способность к самозадержке — после срабатывания (включения) симистор остаётся в проводящем состоянии до тех пор, пока ток через него не упадёт ниже определённого уровня. Этот принцип работает, даже если сигнал на управляющем электроде пропадёт.
Симисторы используются в различных устройствах, например:
▪️ регуляторы скорости электродвигателей;
▪️ преобразователи энергии;
▪️ световые регуляторы.
Существует два основных направления использования симисторов: для включения/выключения коммутации нагрузки в цепях переменного тока и для регулирования мощности, передаваемой в нагрузку путём изменения напряжения. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍74❤28🔥13⚡5👻1
Media is too big
VIEW IN TELEGRAM
⭕️ Головоломка веревочная геометрическая с задачей — освободить кольцо. #задачи #головоломки #геометрия #топология
⬜️ vs ✉️ Как поместить деревянный квадрат в прямоугольный конверт?
🟢 Топологическая загадка
➰ Ещё одна интересная головоломка
〽️ Ремень Дирака
⭕️ Кольцо и цепочка
♾️ Два полукольца — сложное соединение
➿ Петля Мёбиуса
📚 Топология — подборка книг [8 книг]
📚 40 книг по топологии — математическая подборка
🌀 Освободить кольцо
💡 Physics.Math.Code // @physics_lib
⬜️ vs ✉️ Как поместить деревянный квадрат в прямоугольный конверт?
➰ Ещё одна интересная головоломка
〽️ Ремень Дирака
⭕️ Кольцо и цепочка
♾️ Два полукольца — сложное соединение
➿ Петля Мёбиуса
📚 Топология — подборка книг [8 книг]
📚 40 книг по топологии — математическая подборка
🌀 Освободить кольцо
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍103🤯24❤17🔥14😱3👏2✍1⚡1🌚1
🤔 Задача по математике для наших подписчиков. Уровень сложности: ~7-8 класс
#math #математика #задачи #пропорции #разбор_задач #algebra #calculus
✏️ Подсказка к задаче здесь
💡 Physics.Math.Code // @physics_lib
#math #математика #задачи #пропорции #разбор_задач #algebra #calculus
✏️ Подсказка к задаче здесь
💡 Physics.Math.Code // @physics_lib
👍48🤯23❤9😱5✍2🔥2🤔2
🔎 Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками.
Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.
💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону. В то время как де Буффон предлагал шлифовать такую линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль). Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках.
💡 Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы. Предложена Огюстеном Френелем для морских маяков. Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля). #физика #оптика #опыты #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
👍54❤26🔥7❤🔥2⚡1
Media is too big
VIEW IN TELEGRAM
Механизм Даниэля де Брюйна — это шестерёнчатый редуктор, созданный для визуализации числа гугол (10 в 100 степени).
— Состоит из 100 связанных между собой шестерёнок.
— Каждая пара шестерёнок имеет передаточное число 1:10: за десять оборотов первой шестерёнки вторая совершает один оборот.
— Суммарно передаточное число механизма — один гугол.
Когда поворачивают шестерёнку на одном конце, поворачивается следующая шестерёнка со скоростью 1/10. 10 полных вращений первой шестерёнки приводят к единственному повороту второй. Первую шестерёнку нужно повернуть 100 раз, чтобы вторая повернулась 10 раз, а третья — всего 1 раз, и так далее. Чтобы провернуть последнее колесо хоть на зубчик, первое колесо должно совершить полный оборот ровно 1 гугол раз. Де Брюйн заявил, что создал протокол — устройство, собранное из подручных материалов, которое не способно проработать до полного оборота последней шестерёнки.
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #опыты #динамика #механика #разработка #mechanics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍50🔥28❤19🤩4😭2⚡1
План "Минимум 100 000₽ для каждого" дал первые результаты — сработал в 97% случаях✅
Российский миллионер Андрей Титов протестировал новую собственную крипто-программу "Минимум 1000$ для каждого"
Она предполагает создание универсального подхода, позволяющего новичку с 0 заработать первые 100 тысяч уже в первую неделю
💳Конечный результат шокировал: более 97% студентов смогли получить прибыль 1000-3000$
Опыт? Не нужен. Занятность? 1-2 часа в день. Риски? Нулевые, даже с работы уходить не надо.
Все, что нужно для заработка – подписаться на канал Приватная информация 🔒 Trading . Там узнаете, как с помощью копирования сделок накопить на машину или квартиру, выйдя на доход в 200-300 тысяч
Дерзайте, пока информация в открытом доступе: https://t.iss.one/+lUEQp2OEGkFjMTFi
Российский миллионер Андрей Титов протестировал новую собственную крипто-программу "Минимум 1000$ для каждого"
Она предполагает создание универсального подхода, позволяющего новичку с 0 заработать первые 100 тысяч уже в первую неделю
💳Конечный результат шокировал: более 97% студентов смогли получить прибыль 1000-3000$
Опыт? Не нужен. Занятность? 1-2 часа в день. Риски? Нулевые, даже с работы уходить не надо.
Все, что нужно для заработка – подписаться на канал Приватная информация 🔒 Trading . Там узнаете, как с помощью копирования сделок накопить на машину или квартиру, выйдя на доход в 200-300 тысяч
Дерзайте, пока информация в открытом доступе: https://t.iss.one/+lUEQp2OEGkFjMTFi
🗿78🙈41😭13❤10👍6🤷♀4🤩3👾3🤯2🤓2🆒2
📚 Как решать задачи [20+ книг]
💾 Скачать книги
🔵 Физика – это основа всего естествознания, она необходима для изучения химии, биологии, географии, геологии, астрономии. В свою очередь для понимания самой физики большие познания в других естественных дисциплинах не требуются, однако нужны знания и навыки из такой науки, как математика. Считается, что физика на сегодня является самой развитой и формализованной (то есть описываемой с помощью математических инструментов) естественной наукой.
💡 Сделаем подборку книг о том как научиться решать физико-математические задачи? В комментариях обязательно напишите какие книги по физике ваши любимые!
#подборка_книг #физика #техника #physics #задачи #наука #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
🔵 Физика – это основа всего естествознания, она необходима для изучения химии, биологии, географии, геологии, астрономии. В свою очередь для понимания самой физики большие познания в других естественных дисциплинах не требуются, однако нужны знания и навыки из такой науки, как математика. Считается, что физика на сегодня является самой развитой и формализованной (то есть описываемой с помощью математических инструментов) естественной наукой.
💡 Сделаем подборку книг о том как научиться решать физико-математические задачи? В комментариях обязательно напишите какие книги по физике ваши любимые!
#подборка_книг #физика #техника #physics #задачи #наука #science
💡 Physics.Math.Code // @physics_lib
❤42👍25🔥13🤩3😍1