Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Эффект Мейсснера — полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.
При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник качественно отличается от «обычного» материала с высокой проводимостью.
Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и занимает некоторый тонкий слой вблизи поверхности. Например, в случае помещённого во внешнее поле шара (см. рис.) этот ток будет формироваться носителями заряда, движущимися в приповерхностном слое по кольцевым траекториям, лежащим в плоскостях, ортогональных плоскости рисунка и полю на бесконечности (радиус колец меняется от радиуса шара в середине до нуля вверху и внизу).
Роль идеальной проводимости состоит в том, что появившийся поверхностный ток протекает бездиссипативно и неограниченно долго — при конечном сопротивлении среда не смогла бы реагировать на наложение поля таким способом.
Магнитное поле возникшего тока компенсирует в толще сверхпроводника внешнее поле (уместна аналогия с экранированием электрического поля индуцированным на поверхности металла зарядом). В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.
#физика #факты #сверхпроводимость #электродинамика #опыты #эксперименты #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥30❤17👍14⚡3🤯3
This media is not supported in your browser
VIEW IN TELEGRAM
🪜 Задача по физике для наших подписчиков
Обе веревочные лестницы были выпущены в одно и то же время и при одинаковых условиях. Почему конец одной из них прилетел раньше?
#физика #physics #механика #gif #опыты #видеоуроки #научные_фильмы #эксперименты
💡 Physics.Math.Code // @physics_lib
Обе веревочные лестницы были выпущены в одно и то же время и при одинаковых условиях. Почему конец одной из них прилетел раньше?
#физика #physics #механика #gif #опыты #видеоуроки #научные_фильмы #эксперименты
💡 Physics.Math.Code // @physics_lib
🤔33👍28❤12🔥9❤🔥2🤯2🆒1
👨🏻💻 Подборка полезных книг по разработке приложений на Unity 👾
Unity — межплатформенная среда разработки компьютерных игр, разработанная американской компанией Unity Technologies. Unity позволяет создавать приложения, работающие на более чем 25 различных платформах, включающих персональные компьютеры, игровые консоли, мобильные устройства, интернет-приложения и другие. Выпуск Unity состоялся в 2005 году и с того времени идёт постоянное развитие.
Основными преимуществами Unity являются наличие визуальной среды разработки, межплатформенной поддержки и модульной системы компонентов. К недостаткам относят появление сложностей при работе с многокомпонентными схемами и затруднения при подключении внешних библиотек.
📗 Unity in Action, Third Edition [2022] Joseph Hocking
📘 Изучаем C# через разработку игр на Unity. 5-е изд [2022] Ферроне Х.
📘 Разработка игры в Unity. С нуля и до реализации [2021] Денисов
📙 Искусство создания сценариев в Unity [2016] Торн А.
📕 Head First C #, 4-е издание [2020] Эндрю Стеллман, Дженнифер Грин
📒 Unity в действии. Мультиплатформенная разработка на C# [2019] Хокинг Джозеф
📙 Arm Guide for Unity Developers Version 4.0 Optimizing Mobile Gaming Graphics [2017]
📓 Unity in Action. Multiplatform game development in C#, 2nd Edition [2018]
📗 Unity для разработчика. Мобильные мультиплатформенные игры - Джон Мэннинг, Пэрис Батфилд-Эддисон [2018, PDF]
На Unity написаны тысячи игр, приложений, визуализации математических моделей, которые охватывают множество платформ и жанров. При этом Unity используется как крупными разработчиками, так и независимыми студиями.
💡А есть ли среди наших подписчиков разработчики игр, которые используют Unity? Если да, то покажите ваши проекты в комментариях
#разработка_игр #gamedev #game_development #unity #c_sharp #подборка_книг
💡 Physics.Math.Code // @physics_lib
Unity — межплатформенная среда разработки компьютерных игр, разработанная американской компанией Unity Technologies. Unity позволяет создавать приложения, работающие на более чем 25 различных платформах, включающих персональные компьютеры, игровые консоли, мобильные устройства, интернет-приложения и другие. Выпуск Unity состоялся в 2005 году и с того времени идёт постоянное развитие.
Основными преимуществами Unity являются наличие визуальной среды разработки, межплатформенной поддержки и модульной системы компонентов. К недостаткам относят появление сложностей при работе с многокомпонентными схемами и затруднения при подключении внешних библиотек.
📗 Unity in Action, Third Edition [2022] Joseph Hocking
📘 Изучаем C# через разработку игр на Unity. 5-е изд [2022] Ферроне Х.
📘 Разработка игры в Unity. С нуля и до реализации [2021] Денисов
📙 Искусство создания сценариев в Unity [2016] Торн А.
📕 Head First C #, 4-е издание [2020] Эндрю Стеллман, Дженнифер Грин
📒 Unity в действии. Мультиплатформенная разработка на C# [2019] Хокинг Джозеф
📙 Arm Guide for Unity Developers Version 4.0 Optimizing Mobile Gaming Graphics [2017]
📓 Unity in Action. Multiplatform game development in C#, 2nd Edition [2018]
📗 Unity для разработчика. Мобильные мультиплатформенные игры - Джон Мэннинг, Пэрис Батфилд-Эддисон [2018, PDF]
На Unity написаны тысячи игр, приложений, визуализации математических моделей, которые охватывают множество платформ и жанров. При этом Unity используется как крупными разработчиками, так и независимыми студиями.
💡А есть ли среди наших подписчиков разработчики игр, которые используют Unity? Если да, то покажите ваши проекты в комментариях
#разработка_игр #gamedev #game_development #unity #c_sharp #подборка_книг
💡 Physics.Math.Code // @physics_lib
❤30👍15🔥6😍2🙈2🆒1
Внешний фотоэффект был открыт в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.
В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов, опубликовавший 6 работ. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.
Ещё Столетов пришёл к выводу, что «Разряжающим действием обладают, если не исключительно, то с громадным превосходством перед прочими лучами, лучи самой высокой преломляемости, недостающие в солнечном спектре», то есть вплотную подошёл к выводу о существовании красной границы фотоэффекта. В 1891 г. Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍17⚡11🔥9🌚1
Media is too big
VIEW IN TELEGRAM
Принцип работы: графитовый стержень на конце плюсового провода становится одним из контактов сети, минусовой контакт цепи закрепляется на свариваемой детали и также является токопроводящим. Когда стержень соприкасается с деталью, цепь замыкается, и на конце электрода возникает электрическая дуга.
Важно: провода лучше использовать покороче, так как с ростом длины растёт и их сопротивление, и мощности батарейки может не хватить на то, чтобы преодолеть это сопротивление. Графитовый стержень в процессе сварки сильно раскаляется, поэтому держать его следует плоскогубцами.
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥88👍24❤19⚡4🤯4
В этом посте предлагаю обсудить вопросы, связанные с электроникой и цифровой схемотехникой. Всё это будет полезно начинающим.
◾️ 1. С чего начать изучать электронику?
◾️ 2. Стоит ли прочитать учебник по физике, раздел "электричество и магнетизм" ?
◾️ 3. Лучше начинать с аналоговых приборов или сразу переходить к изучению цифровой схемотехники?
◾️ 4. Нужны ли хорошие знания электроники человеку, занимающемуся программированием встраиваемых систем?
◾️ 5. Стоит ли пытаться травить платы самостоятельно или лучше заказать?
◾️ 6. Хлористое железо, лимонная кислота или фоторезистор?
◾️ 7. Что нужно спаять первым делом? С чего начинать практику?
◾️ 8. Какой набор инструментов/приборов хватит начинающему радиолюбителю?
#электроника #схемотехника #радиофизика #ночной_чат #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥14❤13🗿3❤🔥2👏2🙈2⚡1
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍121❤34🔥29🤷♂3👏3❤🔥2⚡2🤩2
👨🏻💻 Интересная история из нашего чата ( @math_code ), которая может послужить темой для обсуждения нескольких важных вопросов.
▪️ Нужно ли переживать по поводу возраста, в котором вы начинаете изучать Computer Science и программирование в частности? Или силы и знания приходят во время процесса, во время решения и умственной активности, и это не зависит от возраста?
▪️ Нужно ли впадать в депрессию, если что-то долго не получается? Сравнивать себя с другими? Если все вокруг лучше, то неужели нужно бросать это дело? Или же наоборот нужно стремиться быть именно в том коллективе, где ты самый слабый (временно), чтобы был рост?
▪️ Что делать, если не получается решить задачу? Какой алгоритм можно предложить, чтобы научиться вытаскивать себя из таких ситуаций?
▪️ Если вы опытный разработчик, дайте советы начинающим. Именно те советы, которых вам так сильно не хватало на старте вашего обучения. Расскажите про свой опыт, свою историю успеха и неудач. Расскажи про ваш возраст.
📚 Подборка книг по дискретной математике, информатике, алгоритмам
📚 Искусство программирования / The Art of Computer Programming
📚 3 книги по программированию [Никлаус Вирт]
🖥 Какая самая страшная структура данных?
#IT #алгоритмы #computer_science #программирование #наука
💡 Physics.Math.Code // @physics_lib
▪️ Нужно ли переживать по поводу возраста, в котором вы начинаете изучать Computer Science и программирование в частности? Или силы и знания приходят во время процесса, во время решения и умственной активности, и это не зависит от возраста?
▪️ Нужно ли впадать в депрессию, если что-то долго не получается? Сравнивать себя с другими? Если все вокруг лучше, то неужели нужно бросать это дело? Или же наоборот нужно стремиться быть именно в том коллективе, где ты самый слабый (временно), чтобы был рост?
▪️ Что делать, если не получается решить задачу? Какой алгоритм можно предложить, чтобы научиться вытаскивать себя из таких ситуаций?
▪️ Если вы опытный разработчик, дайте советы начинающим. Именно те советы, которых вам так сильно не хватало на старте вашего обучения. Расскажите про свой опыт, свою историю успеха и неудач. Расскажи про ваш возраст.
📚 Подборка книг по дискретной математике, информатике, алгоритмам
📚 Искусство программирования / The Art of Computer Programming
📚 3 книги по программированию [Никлаус Вирт]
#IT #алгоритмы #computer_science #программирование #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤36👍25🔥8👻3✍2❤🔥1🙏1
Есть пара визуальных книг, где много картинок. Подойдет начинающим, школьникам или тем людям, кто лучше воспринимает визуальную информацию: 📕 Статистика и котики и 📒 Статистика в комиксах [2018] Магнелло Эйлин
Следующая книга для школьников, но написанная серьезным языком и для тех, кто не любит детские картинки:
📕 Школьнику о теории вероятностей [1983] Лютикас
Далее книга для понимания темы в целом:
📘 Искусство статистики. Как находить ответы в данных [2021] Дэвид Шпигельхалтер
Третья книга ориентирована на практику. У меня есть такая книга в бумаге, я частенько возвращаюсь к ней, когда нужно вспомнить типовые задачи. Книга идёт как задачник + справочник со всеми формулами. Практика — самая важная вещь, по задачнику сразу понимаешь «понимаешь ли ты вообще хоть что-нибудь». Так что советую практиковаться по данной книге:
📘 Теория вероятностей и математическая статистика. Руководство по решению задач [2021] Григорьев-Голубев, Васильева, Кротов
Если вам нужно работать с данными в контексте программирования, то подойдет вот этот сборник лекций. Всё это есть в обычных книгах по линейной алгебре. Плюсом является тот факт, что рассказывается где это применять на практике:
📕 Python для финансовых расчетов [2021] Ив Хилпиш
📗 Математика для Data Science [2021] Миронов, Минеева
Далее целая подборка, где книги по статистике связываются с популярными языками программирования, такими как R и Python:
📚 15 книг по анализу данных и Big Data
📘 Изучаем Shiny. Создание интерактивных приложений, отчетов и дашбордов при помощи R [2022] Хэдли Уикем
📕 Анализ поведенческих данных на R и Python [2022] Ф. Бюиccoн
Если нет проблем с английским языком:
📕 Statistics and Data Visualization Using R: The Art and Practice of Data Analysis [2022] David S. Brown
📘 Mathematical Statistics with Applications in R 3rd Edition [2021] Kandethody Ramachandran, Chris Tsokos
📗 Data Science from Scratch: First Principles with Python, 2nd edition [2019] Grus J.
📘 Introduction to Probability and Statistics, 15th Edition (Metric Version) [2020] Mendenhall, Beaver, Beaver
📒 Modern Mathematical Statistics with Applications, 3rd edition [2021] Devore, Berk, Carlton
Статистика применяется в науке о данных. Любое изучение должно быть ориентированным на практику, поэтому далее будет книга от автора популярного чтива по алгоритмам:
📘 Наука о данных. Учебный курс [2020] Стивен С. Скиена
Если кому-то нравится целые подборки:
📚 14 книг по математической статистике
Еще подборка из 12 книг по статистике от хорошего автора:
📚 Книги по математике и статистике от Растригина Л.А.
Более сложная тема — уточнение вероятностей:
📔 Байесовская статистика: Star Wars, LEGO, резиновые уточки и многое другое [2021] Уилл Курт
📕 Байесовские модели [2018] Дауни
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51❤29🔥12💯4
📙 Задачи по математике для внеклассных занятий [1968] Сивашевский
💾 Скачать книгу
Материал пособия распределен на 32 занятия. Каждое занятие содержит задачи из различных разделов математики.
#math #алгебра #геометрия #математика #математический_анализ
📚 Задачи по математике [3 книги] [1987 - 1990] В.В. Вавилов и др. Издательство: Наука
📘 Уравнения и неравенства, содержащие параметры [1972] Ястребинецкий Г.А.
📚 27 книг по математике — Колмогоров
📚 Математика для абитуриентов и поступающих в ВУЗы [7 книг]
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Материал пособия распределен на 32 занятия. Каждое занятие содержит задачи из различных разделов математики.
#math #алгебра #геометрия #математика #математический_анализ
📚 Задачи по математике [3 книги] [1987 - 1990] В.В. Вавилов и др. Издательство: Наука
📘 Уравнения и неравенства, содержащие параметры [1972] Ястребинецкий Г.А.
📚 27 книг по математике — Колмогоров
📚 Математика для абитуриентов и поступающих в ВУЗы [7 книг]
💡 Physics.Math.Code // @physics_lib
👍30❤10🔥5🤩1😍1
Задачи_по_математике_для_внеклассных_занятий_1968_Сивашевский.djvu
6.6 MB
📙 Задачи по математике для внеклассных занятий [1968] Сивашевский
Аннотация издательства: Книга предназначена для учителей, ведущих кружковую работу; она может быть использована и учениками старших классов, интересующимися математикой.
Материал пособия распределён на 32 занятия. Каждое занятие содержит задачи из различных разделов математики.
Во второй части книги приведены решения и указания к задачам.
Москва: «Просвещение», 1968
💡 Physics.Math.Code // @physics_lib
Аннотация издательства: Книга предназначена для учителей, ведущих кружковую работу; она может быть использована и учениками старших классов, интересующимися математикой.
Материал пособия распределён на 32 занятия. Каждое занятие содержит задачи из различных разделов математики.
Во второй части книги приведены решения и указания к задачам.
Москва: «Просвещение», 1968
«Математика выявляет порядок, симметрию и определённость, а это — важнейшие виды прекрасного» (Аристотель).
💡 Physics.Math.Code // @physics_lib
🔥25👍15❤8🤩1