Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.29K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Подборка фильмов по ядерной и атомной физике
═══════════════
https://vk.com/wall-51126445_22070
═══════════════
#физика #ядерная_физика #атомная_физика #радиоактивность #распад #атом
👍2
Элементы техники безопасности при работе с радиоактивными веществами
══════════════
vk.com/wall-51126445_22191
══════════════
#радиоактивность #физика #научные_фильмы
👍1
Подборка фильмов по ядерной и атомной физике
════════════════
https://vk.com/wall-51126445_26125
════════════════
[00] Строение атома
[01] Ядерные реакции (1)
[02] Ядерные реакции (2)
[03] Ядерный ракетный двигатель
[04] Явление радиоактивности
[05] Элементы техники безопасности при работе с радиоактивными веществами
[06] Излучение и поглощение энергии атомом
[07] Скоростной титановый подводный атомный ракетоносец К-162
[08] Первая в мире атомная электростанция
[09] Атомная электроэнергетика

#физика #ядерная_физика #атомная_физика #радиоактивность #распад #атом
👍1
Подборка фильмов по ядерной и атомной физике
══════════════════
https://vk.com/wall-51126445_30758
══════════════════
[00] Строение атома
[01] Ядерные реакции (1)
[02] Ядерные реакции (2)
[03] Ядерный ракетный двигатель
[04] Явление радиоактивности
[05] Элементы техники безопасности при работе с радиоактивными веществами
[06] Излучение и поглощение энергии атомом
[07] Скоростной титановый подводный атомный ракетоносец К-162
[08] Первая в мире атомная электростанция
[09] Атомная электроэнергетика

#физика #ядерная_физика #атомная_физика #радиоактивность #распад #атом
📕 Радиоактивность [2013] Алиев Р.А., Калмыков С.Н.

💾 Скачать книгу

✏️ Действие радия на кожу изучено доктором Доло в больнице Сен-Луи. С этой точки зрения радий даёт ободряющие результаты: эпидерма, частично разрушенная действием радия, преобразуется в здоровую.
— Мария Склодовская-Кюри (1867–1934)


#физика #physics #радиоактивность #ядерная_физика #атомная_физика #physics #physics #radioactivity #nuclear_physics #atomic_physics

💡 Physics.Math.Code // @physics_lib
👍47🔥75🤨3❤‍🔥21👏1🤔1😍1💯1
Радиоактивность_2013_Алиев_Р_А_,_Калмыков_С_Н_.pdf
3.5 MB
📕 Радиоактивность [2013] Алиев Р.А., Калмыков С.Н.

Учебное пособие посвящено различным фундаментальным и прикладным аспектам учения о радиоактивности: устойчивости ядра и видам ионизирующих излучений, их детектированию, радиационной безопасности и воздействию излучения на организм, основам ядерной медицины и получению изотопов. Много внимания уделено проблемам радиоэкологии, поведению радионуклидов в окружающей среде, применению их в науках о Земле. Изложены физические и химические принципы, лежащие в основе ядерной медицины - от производства нуклида до готового радиофармпрепарата. Завершающая глава посвящена проблемам и перспективам развития ядерной энергетики в XXI в. Материал изложен доступным языком, сопровождается большим количеством иллюстраций и примеров.
Пособие предназначено для студентов вузов, аспирантов, научных работников, занятых в области радиохимии, ядерной физики, ядерной медицины, науки о Земле, ядерного топливного цикла, и всех тех специалистов, кому приходится сталкиваться с использованием источников излучений и радиоактивными веществами.

✏️...Вряд ли можно продвинуться в современной атомной физике, не зная греческой философии.
Вернер Карл Гейзенберг (1901–1976) — немецкий физик-теоретик


#физика #physics #радиоактивность #ядерная_физика #атомная_физика #physics #physics #radioactivity #nuclear_physics #atomic_physics

💡 Physics.Math.Code // @physics_lib
👍66🔥104🤔2😍2🤝1🆒1
Media is too big
VIEW IN TELEGRAM
🫧 Конденсационная камера – принцип действия и источник альфа-частиц

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт.

Гервидс Валериан Иванович - доцент кафедры общей физики МИФИ, кандидат физико-математических наук.
#физика #physics #опыты #эксперименты #конденсация #радиоактивность #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
👍51🔥4014😍5😎1
Фотоэлектрический эффект — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения. Внешний фотоэффект (фотоэлектронная эмиссия) — физическое явление, заключающееся в потере веществом (металлом) отрицательного заряда под действием электромагнитного излучения. Наблюдается при условии, что частота излучения выше некоторого значения, характерного для данного вещества (красной границы фотоэффекта). Объясняется тем, что фотоны электромагнитного излучения вырывают свободные электроны с поверхности металла. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внешний фотоэффект был открыт в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.

В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов, опубликовавший 6 работ. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Ещё Столетов пришёл к выводу, что «Разряжающим действием обладают, если не исключительно, то с громадным превосходством перед прочими лучами, лучи самой высокой преломляемости, недостающие в солнечном спектре», то есть вплотную подошёл к выводу о существовании красной границы фотоэффекта. В 1891 г. Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным.
#физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥134😍32❤‍🔥1
☢️ Атом: энергия мира [2024]

От первых атомных электростанций до ядерных беспилотных субмарин 5-го поколения: российская атомная энергетика продолжает двигать вперед не только отечественную экономику, но и мировую промышленность. Как развивалась атомная отрасль страны? Кто стоял у ее истоков и каких успехов достигли российские ученые-ядерщики? Что такое ядерная триада и как атомная промышленность поддерживает безопасность страны? Каким образом российский атом изменил Арктику и что ждет атомную энергетику России уже через 30 лет?

▪️ 01. Атомные станции
▪️ 02. Атомные подводные лодки
▪️ 03. Атомоходы
▪️ 04. Ядерный щит

#физика #химия #радиоактивность #атом #опыты #эксперименты #physics #science #видеоуроки #научные_фильмы

💡 Physics.Math.Code // @physics_lib
👍60🔥2487🗿6💊5❤‍🔥2🌚1👻1
Фотоэлектрический эффект — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения. Внешний фотоэффект (фотоэлектронная эмиссия) — физическое явление, заключающееся в потере веществом (металлом) отрицательного заряда под действием электромагнитного излучения. Наблюдается при условии, что частота излучения выше некоторого значения, характерного для данного вещества (красной границы фотоэффекта). Объясняется тем, что фотоны электромагнитного излучения вырывают свободные электроны с поверхности металла. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внешний фотоэффект был открыт в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.

В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов, опубликовавший 6 работ. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Ещё Столетов пришёл к выводу, что «Разряжающим действием обладают, если не исключительно, то с громадным превосходством перед прочими лучами, лучи самой высокой преломляемости, недостающие в солнечном спектре», то есть вплотную подошёл к выводу о существовании красной границы фотоэффекта. В 1891 г. Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
44👍1611🔥9🌚1