Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.29K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
☢️ Физика элементарных частиц — Казаков Д.

Физика элементарных частиц — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Цель этого изучения — понять, как устроен мир неживой природы и установить наиболее общие законы, которые им управляют.
Дмитрий Казаков — доктор физико-математических наук, профессор, член-корреспондент РАН, директор Лаборатории теоретической физики им. Н. Н. Боголюбова Объединенного института ядерных исследований (ОИЯИ). #physics #ядерная_физика #атомная_физика #физика #видеоуроки #лекции #научные_фильмы

💡 Physics.Math.Code // @physics_lib
👍4217🔥8❤‍🔥31🤩1
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #physics #ядерная_физика #атомная_физика #физика #видеоуроки #лекции #научные_фильмы

💡 Physics.Math.Code // @physics_lib
👍102🔥32❤‍🔥86🤯5😱311
Media is too big
VIEW IN TELEGRAM
🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

1885 И. Бальмер открыл спектральную серию атома водорода, открывают их почти 70 лет.
1897 Дж Томсон открыл электрон.
1899 Э. Резерфорд показал наличие излучения ураном альфа- и бета-лучей.
1900 М. Планк ввел постоянную, имеющую размерность действия.
1900 П. Виллар открыл гамма лучи.
1905 А. Эйнштейн открыл закон взаимосвязи массы и энергии, квантовый характер света.
1906 Т. Лайман открыл спектральную серию атома водорода.
1908 Ф. Пашен открыл спектральную серию атома водорода.
1910 А. Гааз модель атома, связывающая квантовый характер излучения со структурой.
1910 Э. Резерфорд открыл атомное ядро и создал планетарную модель атома.
1913 Н. Бор разработал квантовую теорию атома водорода, ввел главное n квановое число.
1913 И. Штарк открыл явление расщепления спектральных линий в электрическом поле.
1913 английский физик Г. Мозли установил, что заряд ядра атома всегда численно равен порядковому (атомному) номеру элемента в Периодической системе.
1915 А. Зоммерфельд ввел радиальное и азимутальное квантовые числа.
1919 Э. Резерфорд открыл протон, первая ядерная реакция превращения азота в кислород.
1922 Ф. Брэккет открыл спектральную серию атома водорода.
1923 Л.де Бройльразвил идею о волновых свойствах материи (основа теории Шрёдингера).
1924 А. Пфунд открыл спектральную серию атома водорода.
1924 В. Паули сформулировал (принцип Паули) современной теоретической физики.
1926 Э. Щрёдингер построил волновую механику, дал основное её уравнение.
1927 В. Гейзенберг сформулировал принцип неопределенности в квантовой механике.
1927 Ф. Хунд установил два эмпирических правила расположения энерг-х уровней атома.
1928 П.Дирак квантовомеханическое уравнение движения релятивистского электрона е– .
1931 В. Паули гипотеза нейтрино.
1932 Дж. Чедвик открыл нейтрон, К. Андерсон открыл позитрон е+.
1938 О.Ган, Ф. Штрассман открыли деление ядра урана.
1944 М. Ивинг, Дж. Ворцель открыто сверхдальнее распространение звука в океане.
1948 Дж. Бардин, У Браттейн изобретен полупроводниковый транзистор.
1948 Д. Габор создание голографии.
1949 У. Шокли предложил р-n-транзистор.
1950 И.Тамм, Л. Спитцер и др. изоляция высокотемпературной плазмы магнитным полем.
1952 Д. Глезер изобрел пузырьковую камеру.
1953 К.Дж. Хамфрис открыл спектральную серию атома водорода.
1959 Э. Сегре открытие антипротона.
1963 М. Гепперт-Майер и Г. Иенсен теория оболочечного строения ядра. Нобел. премии.
1963 М. Гелл-Манном и Д. Цвейгом введено в науку понятие о кварках.

Атом – мельчайшая частица химического вещества, неделимая химическим путем, но физики научились расщеплять атом на части. Одни вещества превращать в другие, изменяя состав атомного ядра. Открытия частиц электрона, фотона, протона, электрического заряда, разложение белого света в цветной спектр и другие явления послужили стимулом развития интереса к строению вещества. Но только в ХХ веке наука вплотную подошла к разработке и созданию модели атома. В 1920 г. Э. Резерфорд предложил орбитальную модель атома. Существенный недостаток модели состоял в том, что при движении частицы ею излучается (теряется) энергия и электрон со временем должен упасть на ядро атома. Этот недостаток устраняла модель атома, предложенная Н. Бором, который введением двух постулатов, носящие теперь его имя, скорректировал орбитальную модель атома Резерфорда. #атом #физика #атомная_физика #видеоуроки #ядерная_физика #science #МКТ #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍110🔥2917❤‍🔥52💯1
Media is too big
VIEW IN TELEGRAM
☢️ Физика элементарных частиц — Казаков Д.

Физика элементарных частиц — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Цель этого изучения — понять, как устроен мир неживой природы и установить наиболее общие законы, которые им управляют.
Дмитрий Казаков — доктор физико-математических наук, профессор, член-корреспондент РАН, директор Лаборатории теоретической физики им. Н. Н. Боголюбова Объединенного института ядерных исследований (ОИЯИ). #physics #ядерная_физика #атомная_физика #физика #видеоуроки #лекции #научные_фильмы

💡 Physics.Math.Code // @physics_lib
👍34👏119🔥72
📚 Сборник задач по общему курсу физики [1976 - 1981] Сивухин Д.В.

В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.

💾 Скачать книги

Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.

Для тех, кто захочет задонать на кофе☕️:
ВТБ: +79616572047 (СБП) Сбер: +79026552832 (СБП) ЮMoney: 410012169999048

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍52🔥198🤯3
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
Издательство: МФТИ


💾 Скачать книги

Для студентов физических специальностей вузов, а также преподавателей высшей и средней школ».

Сборник задач по общему курсу физики [3 книги] [1998-2000]:
▪️ Часть 1: Заикин, Овчинкин, Прут
▪️ Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут
▪️ Часть 3: Овчинкин, Раевский, Ципенюк
Издательство: МФТИ

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
🔥33👍14❤‍🔥64
📚_Сборник_задач_по_общему_курсу_физики_3_книги_1998_2000.zip
136.5 MB
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
Издательство: МФТИ


📕 Часть 1: Заикин, Овчинкин, Прут

Первая часть сборника включает в себя более 1700 задач различной степени трудности. Авторами большей части задач являются преподаватели кафедры общей физики Московского физики технического института. Эти задачи предлагалась студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.

📘 Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут

Вторая часть сборника включает в себя около 1300 задач различной степени трудности. Авторами почти всех задач являются преподаватели кафедры общей физики Московского физико-технического института. Эти задачи предлагались студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.

📗 Часть 3: Овчинкин, Раевский, Ципенюк

Третья часть сборника включает в себя 1235 задач, в основном по квантовой физике атомов и молекул, ядерной физике, физике элементарных частиц, физике излучения, физике твердого тела и низкоразмерных систем. Авторами задач являются преподаватели кафедры общей физики МФТИ.

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
🔥36👍194🥰3❤‍🔥2🤩2
📚 Сборник задач по общему курсу физики [1976 - 1981] Сивухин Д.В.

В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.

💾 Скачать книги

Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.

Для тех, кто захочет задонать на кофе☕️:
ВТБ: +79616572047 (СБП) Сбер: +79026552832 (СБП)

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍4322🔥92❤‍🔥2🥰1🤯1🙏1🆒1
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥70👍36143👏1🤩1
Media is too big
VIEW IN TELEGRAM
☢️ Невероятная история человека, который выжил в ускорителе частиц 🧠

Приготовьтесь к увлекательному путешествию в мир физики элементарных частиц и невероятной человеческой стойкости с нашим видео под названием «Невероятная история человека, который выжил на ускорителе частиц». В 1978 году в Институте физики элементарных частиц Протвино в Советском Союзе Анатолий Бугорский участвовал в исследованиях, направленных на разгадку тайн Вселенной. Однако то, что произошло в тот роковой день, не смог бы предсказать ни один учёный, каким бы опытным он ни был.

Произошла ужасная авария, вызвавшая критический отказ ускорителя частиц. В мгновение ока Анатолия Бугорского поразил луч высокоэнергетических протонов невиданной ранее силы. То, что произошло дальше, было поистине экстраординарным. Пучок протонов прошел через череп Бугорского, проходя через переднюю часть его мозга.

Удивительно, но Бугорский не только пережил этот почти фатальный опыт, но и продолжил работать как учёный. Его история стала легендарной в мире исследований в области физики элементарных частиц. Что делает эту историю еще более невероятной, так это тот факт, что Бугорский не отказался от своей страсти к научным исследованиям, несмотря на трудности, с которыми он столкнулся. После аварии он прожил относительно долгую жизнь, продолжая вносить вклад в науку и став выдающимся примером мужества и решимости.

В этом видео мы глубоко погружаемся в эту невероятную историю, изучая детали аварии, удивительные последствия для тела Бугорского и то, как его опыт бросил вызов нашему пониманию науки и устойчивости человека. Пойдем с нами, и мы расскажем историю Анатолия Бугорского, человека, который встал на путь одной из самых могущественных сил природы во имя науки. История, которая напоминает нам, что поиск знаний часто приводит нас в невообразимые места и может привести к научным достижениям, которые меняют наше понимание мира. #научные_фильмы #видеоуроки #физика #science #наука #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
👍68🤯40😱129🔥6🤨5❤‍🔥2🌚2
Эффект Вавилова — Черенкова — излучение света электрически заряженной частицей при её движении в среде со скоростью, превышающей фазовую скорость света в этой среде.

Явление было обнаружено в 1934 году П. А. Черенковым при исследовании люминесценции растворов как слабое голубое свечение жидкостей под действием гамма-излучения. Объяснение эффекта смогли дать советские физики Игорь Тамм и Илья Франк в 1937 году. Они объяснили эффект равномерным и прямолинейным движением заряженных частиц среды со скоростями, превышающими скорость света в конкретной среде.

Эффект Вавилова — Черенкова используется в разных областях, например:
▪️ В медицине для лучевой терапии — помогает с высокой точностью разрушать опухоль, не повреждая здоровые клетки.
▪️ В детекторах — с помощью него удаётся определить энергию, скорость и направление элементарных частиц космических лучей.
▪️ В астрономии для исследования гамма-излучения от разных астрономических объектов.

За открытие и создание теории эффекта Вавилова — Черенкова в 1958 году И. Е. Тамм, И. М. Франк и П. А. Черенков были удостоены Нобелевской премии.
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9824🔥137❤‍🔥4
Media is too big
VIEW IN TELEGRAM
🔥 Металлическая посуда + Зеркало = Солнечная энергия для приготовления пищи в Афганистане. Вогнутое зеркало, изогнутое внутрь, похоже на чашу и обладает способностью фокусировать световые лучи. Когда световые лучи, падающие на такое зеркало, отражаются, они сходятся в одной точке, известной как фокус. В точке фокуса оказывается достаточно энергии, чтобы подогревать пищу, плавить металлы и камни.

🔤Но какой математической формулой должна описываться геометрическая форма зеркала, чтобы оно могло собирать лучи в одной точке?

▪️ Эллипс: если поместить источник света в фокусе эллипса, то после отражения от стенок эллипса все лучи сойдутся в другом фокусе, причём одновременно. Это свойство используется, например, в методе литотрипсии в медицине, где на основе эллипса удаляют камни из почек.

▪️ Гипербола: луч света, направленный на один фокус, отражается от гиперболы таким образом, что кажется, будто он исходит из другого фокуса. Это свойство используют для изготовления ламп с рассеивающим светом, например, при кварцевании помещения.

▪️ Парабола: лучи света, параллельные оси параболы, отражаются от неё и собираются в фокусе. Это свойство используется в параболических зеркалах и антеннах, а также в конструкциях прожекторов, фонарей, фар, телескопов-рефлекторов.

Таким образом, эллипс фокусирует лучи, выпущенные из одного фокуса, гипербола — лучи, направленные в один фокус, а парабола — лучи, параллельные её оси.

Вопрос для наших подписчиков: Подходит ли зеркало сферической формы? Сможет ли оно собрать все лучи в одно точке?

🔎 Оптика вогнутых (сферических и параболических) зеркал

📡 Задача по физике [оптике] для наших подписчиков

#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥125👍3721🤩3❤‍🔥1👏1🤯1
От_Кирхгофа_до_Планка_1981_Х_Г_Шёпф_.djvu
2.2 MB
📙 От Кирхгофа до Планка [1981] Ханс-Георг Шёпф

Книга профессора Ханс-Георга Шёпфа (ГДР) представляет собой краткое изложение истории развития теории теплового излучения. Автор очень интересно преподносит ее читателям: в первой части он излагает теорию теплового излучения с современной точки зрения, во вторую часть включает оригинальные работы основоположников теории теплового излучения - Кирхгофа. Больцмана. Вина, Рэлея, Планка. Книга позволяет читателям (от студентов-физиков до широких кругов научных сотрудников в области физики) познакомиться с одной из наиболее ярких идей нашего века — идеей квантования излучения.

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
🔥32👍227🤝32
Физика,_пособие_для_поступающих_в_вузы_1979_Кембровский_Г_С_,_Галко.djvu
40.7 MB
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.

Пособие включает необходимый для подготовки к экзаменам в вуз материал. Четвертое издание переработано с учетом школьной программы по физике (на 1979 год).

Пособие составлено в соответствии с программой вступительных экзаменов в вузы. Оно содержит основной теоретический материал по элементарной физике, примеры решения задач с соответствующим анализом результатов и выводами, вопросы для самоконтроля, а также задачи для самостоятельного решения. Книга предназначена для учащихся старших классов, готовящихся к сдаче вступительных экзаменов по физике в вузы, а также для слушателей заочных и вечерних подготовительных курсов. Может быть использована преподавателями физики средних школ и техникумов. Издание 1970 года. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍3814🔥8🤩5🥰21
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍8937🔥22😱11😍52
Фотоэлектрический эффект — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения. Внешний фотоэффект (фотоэлектронная эмиссия) — физическое явление, заключающееся в потере веществом (металлом) отрицательного заряда под действием электромагнитного излучения. Наблюдается при условии, что частота излучения выше некоторого значения, характерного для данного вещества (красной границы фотоэффекта). Объясняется тем, что фотоны электромагнитного излучения вырывают свободные электроны с поверхности металла. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внешний фотоэффект был открыт в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.

В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов, опубликовавший 6 работ. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Ещё Столетов пришёл к выводу, что «Разряжающим действием обладают, если не исключительно, то с громадным превосходством перед прочими лучами, лучи самой высокой преломляемости, недостающие в солнечном спектре», то есть вплотную подошёл к выводу о существовании красной границы фотоэффекта. В 1891 г. Эльстер и Гейтель при изучении щелочных металлов пришли к выводу, что, чем выше электроположительность металла, тем ниже граничная частота, при которой он становится фоточувствительным. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
44👍1611🔥9🌚1
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов

💾 Скачать книги

Для слушателей подготовительных отделений вузов, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.
«Бесконечность и неделимое превосходят наше конечное понимание, первое из-за их величины, последнее из-за их малости; Представьте, что они представляют собой, если их объединить».
— Галилео Галилей.


📕 Физика в задачах Экзаменационные задачи с решениями [1985] Меледин Г. В

📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.

📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]

📚 Курс общей физики в 5 томах [2021] Савельев И.В.

📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск

📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП) Сбер: +79026552832 (СБП) ЮMoney: 410012169999048

#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
23👍20🔥5🤩1🤗1
Задачи по физике [4 книги].zip
24.4 MB
📘 Задачи по физике [1988-2008] Воробьев, Зубков, Кутузова, Савченко, Трубачев, Харитонов, Чертов

Содержит свыше 2000 задач по физике из числа предлагавшихся в физико-математической школе-интернате при Новосибирском государственном университете. Особое внимание уделено тем разделам, которые в школе изучаются недостаточно глубоко, но важны для успешного обучения в вузе. Включено много оригинальных задач, связанных с практикой научно-исследовательской работы. Все они снабжены ответами, наиболее трудные — решениями. В новом издании улучшена структура расположения материала, переработаны формулировки и решения ряда задач.

Для слушателей подготовительных отделений вузов и студентов первых курсов технических направлений, учащихся и преподавателей средней школы, учащихся физико-математических школ, а также лиц, занимающихся самообразованием.

«Изучение физики — это тоже приключение. Вы найдете это сложным, иногда разочаровывающим, иногда болезненным, а часто и щедро вознаграждающим».


#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм

💡 Physics.Math.Code // @physics_lib
👍2117🔥6🤗3💯1🆒1