This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Новая идея терраформирования Марса — возможно ли это?
Терраформирование Марса — гипотетический процесс, в ходе которого марсианский климат, поверхность и другие характеристики планеты должны быть последовательно изменены с целью сделать большие пространства на поверхности Марса более пригодными для человеческой жизни, таким образом облегчая колонизацию планеты, а также делая эту колонизацию гораздо более безопасной и устойчивой.
Концепция базируется на предположении, что среда планеты может быть терраформирована с использованием искусственных средств. Кроме того, осуществимость такого создания планетарной биосферы на Марсе ещё не доказана. Было предложено несколько методов, реализация отдельных из которых требует невероятных ресурсных и денежных затрат, а также несколько других, которые сейчас являются технологически достижимыми.
Будущий прирост населения и потребности в ресурсах могут обусловить необходимость колонизации объектов, отличных от Земли, таких как Марс, Луна и ближайшие планеты. Колонизация космоса облегчит человечеству сбор энергетических и материальных ресурсов, имеющихся в Солнечной системе.
Со многих точек зрения Марс наиболее похож на Землю из всех планет, входящих в Солнечную систему. Считается, что Марс когда-то, на ранних этапах своей истории, действительно имел среду ещё более похожую на современную Землю, имел густую атмосферу и много воды, которую потерял за период в несколько сотен миллионов лет. Из-за сходства и близости «Красной планеты» к Земле, Марс может оказаться наиболее целесообразным и эффективным объектом для терраформирования среди всех космических тел в Солнечной системе.
К этической проблематике принадлежит опасность потенциального вытеснения местных марсианских форм жизни земными, если такие формы жизни, хотя бы и микробные, действительно существуют. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
Терраформирование Марса — гипотетический процесс, в ходе которого марсианский климат, поверхность и другие характеристики планеты должны быть последовательно изменены с целью сделать большие пространства на поверхности Марса более пригодными для человеческой жизни, таким образом облегчая колонизацию планеты, а также делая эту колонизацию гораздо более безопасной и устойчивой.
Концепция базируется на предположении, что среда планеты может быть терраформирована с использованием искусственных средств. Кроме того, осуществимость такого создания планетарной биосферы на Марсе ещё не доказана. Было предложено несколько методов, реализация отдельных из которых требует невероятных ресурсных и денежных затрат, а также несколько других, которые сейчас являются технологически достижимыми.
Будущий прирост населения и потребности в ресурсах могут обусловить необходимость колонизации объектов, отличных от Земли, таких как Марс, Луна и ближайшие планеты. Колонизация космоса облегчит человечеству сбор энергетических и материальных ресурсов, имеющихся в Солнечной системе.
Со многих точек зрения Марс наиболее похож на Землю из всех планет, входящих в Солнечную систему. Считается, что Марс когда-то, на ранних этапах своей истории, действительно имел среду ещё более похожую на современную Землю, имел густую атмосферу и много воды, которую потерял за период в несколько сотен миллионов лет. Из-за сходства и близости «Красной планеты» к Земле, Марс может оказаться наиболее целесообразным и эффективным объектом для терраформирования среди всех космических тел в Солнечной системе.
К этической проблематике принадлежит опасность потенциального вытеснения местных марсианских форм жизни земными, если такие формы жизни, хотя бы и микробные, действительно существуют. #gif #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
👍67🔥14🤯8💊8🤔6🙈4❤3🆒2
Media is too big
VIEW IN TELEGRAM
После открытия Нептуна в 1846 году бытовало мнение, что за его орбитой может существовать ещё одна планета. В середине XIX века начались её поиски. В начале XX века за поиски «планеты X» взялся Персиваль Лоуэлл. Гипотезой о планете X он объяснял различия между рассчитанными и фактическими орбитами газовых гигантов, в частности, Урана и Нептуна, считая, что эти отклонения вызываются гравитацией большой невидимой девятой планеты.
Казалось, что открытие Плутона, совершённое астрономом Клайдом Томбо в 1930 году, подтверждает гипотезу Лоуэлла: до 2006 года Плутон официально считался девятой планетой. В 1978 году, после открытия Харона, выяснилось, что масса Плутона слишком мала, чтобы его гравитация влияла на газовые гиганты. Это обусловило кратковременный интерес к «десятой планете». В начале 1990-х годов её поиски почти прекратились, поскольку в результате исследования данных, поступивших от космического зонда «Вояджер-2», оказалось, что отклонения орбиты Урана объясняются недооценкой массы Нептуна. После 1992 года, в результате открытия многочисленных транснептуновых объектов, встал вопрос, следует ли и дальше считать Плутон планетой, или, возможно, его и его «соседей» следует отнести к новому особому классу объектов, как это было сделано в случае с астероидами. Хотя некоторые большие члены этой группы сначала считались планетами, в 2006 году Международный астрономический союз переквалифицировал Плутон и его крупнейших соседей в карликовые планеты, вследствие чего в Солнечной системе осталось лишь восемь планет... #планеты #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤61👍49🔥11🙈3❤🔥2🤔2👾2⚡1🤯1
Media is too big
VIEW IN TELEGRAM
💥 Можно ли заглянуть в прошлое с помощью зеркала?
🔦 Свет — это очень быстрая штука. Но и звезды очень далеко. Свет движется в вакууме со скоростью почти 300 000 км/с. Но даже ближайшие к Солнцу звезды находятся очень далеко. И поэтому свет от них может путешествовать в космосе годами, прежде чем достигнет Солнечной системы. Ближайшая из звездных систем, Альфа Центавра, находится на расстоянии около 4,25 световых лет от Солнечной системы. А самая яркая звезда на нашем небе, Сириус, на расстоянии 8,6 светового года. Это означает, что если бы какой-то безумный генерал дал указание взорвать тысячу ядерных боеголовок на Сириусе, мы бы узнали об этом событии только 8,6 года спустя.
Одной из самых далеких звезд, которые можно увидеть невооруженным глазом, является Денеб. Она находится в созвездии Лебедь. И удалена от нас эта звезда на расстояние почти в 3000 световых лет. Это означает, что когда Вы смотрите на нее, свет, который Вы видите, начал свое путешествие к Земле в те времена, когда древний Рим только начинал обретать свое могущество. И его не было ни на одной карте. Человеку может показаться, что с тех пор прошло уже очень и очень много времени. Однако по отношению к среднему возрасту звезды, которой миллиарды лет, это мгновение. Так что если в районе Денеба не произошла какая-то колоссальная космическая катастрофа, эта звезда все еще находится на своем месте. #планеты #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
🔦 Свет — это очень быстрая штука. Но и звезды очень далеко. Свет движется в вакууме со скоростью почти 300 000 км/с. Но даже ближайшие к Солнцу звезды находятся очень далеко. И поэтому свет от них может путешествовать в космосе годами, прежде чем достигнет Солнечной системы. Ближайшая из звездных систем, Альфа Центавра, находится на расстоянии около 4,25 световых лет от Солнечной системы. А самая яркая звезда на нашем небе, Сириус, на расстоянии 8,6 светового года. Это означает, что если бы какой-то безумный генерал дал указание взорвать тысячу ядерных боеголовок на Сириусе, мы бы узнали об этом событии только 8,6 года спустя.
Одной из самых далеких звезд, которые можно увидеть невооруженным глазом, является Денеб. Она находится в созвездии Лебедь. И удалена от нас эта звезда на расстояние почти в 3000 световых лет. Это означает, что когда Вы смотрите на нее, свет, который Вы видите, начал свое путешествие к Земле в те времена, когда древний Рим только начинал обретать свое могущество. И его не было ни на одной карте. Человеку может показаться, что с тех пор прошло уже очень и очень много времени. Однако по отношению к среднему возрасту звезды, которой миллиарды лет, это мгновение. Так что если в районе Денеба не произошла какая-то колоссальная космическая катастрофа, эта звезда все еще находится на своем месте. #планеты #физика #механика #астрономия #космос #космология #кинематика #physics
💡 Physics.Math.Code // @physics_lib
👍110🔥15❤12🤔5⚡2😱2✍1
Media is too big
VIEW IN TELEGRAM
🌘Лунный ковчег 🌔
Группа ученых предположила концепцию «лунного ковчега», спрятанного внутри древних лавовых каналов Луны. Это колоссальное хранилище может хранить сперму, яйца и семена миллионов биологических видов Земли, создав тем самым уникальный резерв на самый черный день.
Чтобы «перезапустить» биоразнообразие Земли на случай внезапной глобальной катастрофы, ученые предлагают построить в лавовых каналах Луны настоящий «ковчег» — хранилище генов всех живых видов.
Ковчег (проще говоря — банк генов) будет надежно спрятан в туннелях и пещерах, проложенных лавовыми потоками свыше 3 миллиардов лет назад, а источником энергии для него выступят солнечные батареи, расположенные на поверхности спутника Земли. По словам исследователей, в криогенном хранилище будет находиться генетический материал всех 6,7 миллиона известных видов растений, животных и грибов на Земле, для доставки которых на Луну потребуется не менее 250 запусков ракет.
Ученые считают, что подобные меры помогут защитить дикую природу нашей планеты от природных и антропогенных апокалиптических сценариев, таких как извержение супервулкана или ядерная война, и обеспечить выживание генов всех земных видов. Исследователи представили проект будущего ковчега на аэрокосмической конференции IEEE.
#физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
Группа ученых предположила концепцию «лунного ковчега», спрятанного внутри древних лавовых каналов Луны. Это колоссальное хранилище может хранить сперму, яйца и семена миллионов биологических видов Земли, создав тем самым уникальный резерв на самый черный день.
Чтобы «перезапустить» биоразнообразие Земли на случай внезапной глобальной катастрофы, ученые предлагают построить в лавовых каналах Луны настоящий «ковчег» — хранилище генов всех живых видов.
Ковчег (проще говоря — банк генов) будет надежно спрятан в туннелях и пещерах, проложенных лавовыми потоками свыше 3 миллиардов лет назад, а источником энергии для него выступят солнечные батареи, расположенные на поверхности спутника Земли. По словам исследователей, в криогенном хранилище будет находиться генетический материал всех 6,7 миллиона известных видов растений, животных и грибов на Земле, для доставки которых на Луну потребуется не менее 250 запусков ракет.
Ученые считают, что подобные меры помогут защитить дикую природу нашей планеты от природных и антропогенных апокалиптических сценариев, таких как извержение супервулкана или ядерная война, и обеспечить выживание генов всех земных видов. Исследователи представили проект будущего ковчега на аэрокосмической конференции IEEE.
#физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
👍71🤷♂16🔥15💊15🤔7😱3🤩3❤🔥2👻2❤1😭1
Media is too big
VIEW IN TELEGRAM
🌘 Причины приливов на Земле 🌎
Прилив и отлив — периодические колебания уровня океана или моря, являющиеся результатом воздействия гравитационных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раза больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.
Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации. Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне пригодную для еды пищу.
Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, прили́вные силы, порождаемые Луной, вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не только от величины гравитационного поля, но и от степени его неоднородности, которая уменьшается при увеличении расстояния от источника поля, так что приливная сила обратно пропорциональна кубу расстояния до её источника (тогда как сила тяготения — квадрату). Солнце почти в 400 раз дальше от Земли, чем Луна, поэтому приливные силы, вызываемые солнечным притяжением, оказываются слабее.
Суточное вращение Земли приводит к тому, что в системе отсчёта, связанной с земной поверхностью, по океану бегут по противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся явлениям прилива, чередующимся с явлениями отлива — за счёт взаимодействия с Луной; и ещё две, меньшего размера — за счёт взаимодействия с Солнцем. Итоговая приливная волна представляет собой суперпозицию этих волн.
Взаиморасположение Луны и Солнца относительно Земли периодически меняется, поэтому меняется величина и скорость результирующих приливно-отливных явлений.
Лунный промежуток — это задержка прихода волны, то есть отрезок времени с момента прохождения Луной наивысшего положения над горизонтом или наинизшего положения под горизонтом (то есть пересечения ею небесного меридиана) до момента максимального уровня воды в ходе прилива. #геология #физика #астрономия #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Прилив и отлив — периодические колебания уровня океана или моря, являющиеся результатом воздействия гравитационных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раза больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.
Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации. Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне пригодную для еды пищу.
Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, прили́вные силы, порождаемые Луной, вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не только от величины гравитационного поля, но и от степени его неоднородности, которая уменьшается при увеличении расстояния от источника поля, так что приливная сила обратно пропорциональна кубу расстояния до её источника (тогда как сила тяготения — квадрату). Солнце почти в 400 раз дальше от Земли, чем Луна, поэтому приливные силы, вызываемые солнечным притяжением, оказываются слабее.
Суточное вращение Земли приводит к тому, что в системе отсчёта, связанной с земной поверхностью, по океану бегут по противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся явлениям прилива, чередующимся с явлениями отлива — за счёт взаимодействия с Луной; и ещё две, меньшего размера — за счёт взаимодействия с Солнцем. Итоговая приливная волна представляет собой суперпозицию этих волн.
Взаиморасположение Луны и Солнца относительно Земли периодически меняется, поэтому меняется величина и скорость результирующих приливно-отливных явлений.
Лунный промежуток — это задержка прихода волны, то есть отрезок времени с момента прохождения Луной наивысшего положения над горизонтом или наинизшего положения под горизонтом (то есть пересечения ею небесного меридиана) до момента максимального уровня воды в ходе прилива. #геология #физика #астрономия #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
👍95❤🔥9⚡4❤3🔥3🤨3🌚2🤗1💊1
Media is too big
VIEW IN TELEGRAM
Non-rocket spacelaunch — космический запуск, или способ выведения на орбиту, при котором некоторая или вся необходимая скорость и высота достигается без помощи традиционных ракет, запускаемых с земной поверхности. Предложено множество альтернатив ракетам. В некоторых системах, таких как ракетные салазки и воздушный старт, ракета участвует в достижении орбиты, но включается после достижения некой начальной высоты или скорости другим способом.
В стоимости космических проектов транспортировка на орбиту составляет значительную часть бюджета; если её удастся сделать более эффективной, общая стоимость космического полёта сильно уменьшится. На текущий день стоимость запуска килограмма полезной массы с Земли на низкую опорную орбиту западными ракетами лежит в пределах от $10К-25К. Для Ангары-А5 цена запуска 1 кг груза на НОО составляет 2400 $. Поскольку теоретически возможная минимальная стоимость энергии меньше на порядок, возможно значительное снижение стоимости. Для обживания космического пространства, то есть исследования и колонизации космоса, требуются намного более дешёвые методы запуска, а также способ предотвращения серьёзного вреда атмосфере со стороны тысяч, а возможно и миллионов запусков.
🛕 Космическая башня — строение, которое бы достигло внешнего космоса. Чтобы избежать необходимости в транспортном средстве, запускаемом с первой космической скоростью, башня должна возвышаться над границей космоса (выше отметки 100 км — Линия Кармана), но и башня гораздо меньшей высоты могла бы снизить лобовое сопротивление в атмосфере при подъёме. Спутники могут временно вращаться по эллиптическим орбитам, опускающимся до 135 км и ниже, но искажение орбиты, вызывающее вход в плотные слои атмосферы, будет очень быстрым, если только высота позже не будет срочно восстановлена до сотен километров. Если башня, расположенная на экваторе, будет простираться до геосинхронной орбиты на высоте примерно 36 000 км, объекты, выпущенные на такой высоте, могут затем улететь с минимальными затратами энергии и будут находиться на круговой орбите. Однако, башню такой экстремальной высоты невозможно сделать из материалов, существующих в данный момент на Земле. Кроме того, все более низколетящие спутники рано или поздно столкнутся с такой башней (так как плоскость орбиты любого спутника обязательно проходит через центр Земли и следовательно пересекает плоскость экватора). Набросок структуры, достигающей геосинхронной орбиты, впервые был предложен Константином Циолковским, который предложил компрессионную структуру, или «Башню Циолковского». #физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍67❤10🔥8👻5🤯2😢2👏1💯1
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
👍81🔥28❤12❤🔥10🙈7
This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Галактики — Лоуренс Краусс
Экстраполяция расширения Вселенной назад во времени приводит к точке космической сингулярности, вблизи которой ныне известные законы физики перестают работать. Время же расширения из этой космической сингулярности до современного состояния называют возрастом Вселенной; по различным данным, оно составляет приблизительно 14 млрд лет.
Расширение является основным процессом, на фоне которого происходят все остальные, поэтому всю историю развития можно разделить на этапы расширения:
▪️ Планковская эпоха — момент, с которого начинает работать современная физика.
▪️Инфляционная стадия. На этой стадии происходит резкое увеличение размеров Вселенной, а в конце его — также сильный нагрев.
▪️Стадия радиационного доминирования. Основная стадия ранней Вселенной. Температура начинает снижаться и в начале электрослабое взаимодействие отделяется от сильного взаимодействия, затем образуются кварки. После смены последовательных эпох адронов и лептонов, в эпохе нуклеосинтеза образуются привычные нам химические элементы.
▪️Эпоха доминирования вещества (пыли). В начале этой эпохи электромагнитное излучение отделяется от вещества и образуется реликтовый фон. Затем идут тёмные века. Они заканчиваются, когда излучение первых звёзд повторно ионизирует вещество.
▪️Λ-доминирование. Текущая эпоха.
Момент образования реликтового фона является пограничным для эволюции вещества. Если до него она полностью определялась расширением, то после роль первой скрипки берет на себя гравитационное взаимодействие скоплений вещества, как друг с другом, так и с самим собой. Именно она отвечает за образование звёзд, звёздных скоплений галактик, а также слияние последних.
Отделение реликтового фона стало возможным благодаря остыванию Вселенной, вызванному расширением. Таким же процессом, предопределившим конец эпохи доминирования гравитации и порожденным ей, стало изменение химического состава из-за вспышек сверхновых звёзд.
Возникновение жизни — следующий этап развития Вселенной, знаменующий, что вещество теперь может самоорганизовываться, а не зависеть во всём от внешних условий.
Полное видео: ☄️ Профессор Лоуренс Краусс : Возникновение Вселенной
#физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
Экстраполяция расширения Вселенной назад во времени приводит к точке космической сингулярности, вблизи которой ныне известные законы физики перестают работать. Время же расширения из этой космической сингулярности до современного состояния называют возрастом Вселенной; по различным данным, оно составляет приблизительно 14 млрд лет.
Расширение является основным процессом, на фоне которого происходят все остальные, поэтому всю историю развития можно разделить на этапы расширения:
▪️ Планковская эпоха — момент, с которого начинает работать современная физика.
▪️Инфляционная стадия. На этой стадии происходит резкое увеличение размеров Вселенной, а в конце его — также сильный нагрев.
▪️Стадия радиационного доминирования. Основная стадия ранней Вселенной. Температура начинает снижаться и в начале электрослабое взаимодействие отделяется от сильного взаимодействия, затем образуются кварки. После смены последовательных эпох адронов и лептонов, в эпохе нуклеосинтеза образуются привычные нам химические элементы.
▪️Эпоха доминирования вещества (пыли). В начале этой эпохи электромагнитное излучение отделяется от вещества и образуется реликтовый фон. Затем идут тёмные века. Они заканчиваются, когда излучение первых звёзд повторно ионизирует вещество.
▪️Λ-доминирование. Текущая эпоха.
Момент образования реликтового фона является пограничным для эволюции вещества. Если до него она полностью определялась расширением, то после роль первой скрипки берет на себя гравитационное взаимодействие скоплений вещества, как друг с другом, так и с самим собой. Именно она отвечает за образование звёзд, звёздных скоплений галактик, а также слияние последних.
Отделение реликтового фона стало возможным благодаря остыванию Вселенной, вызванному расширением. Таким же процессом, предопределившим конец эпохи доминирования гравитации и порожденным ей, стало изменение химического состава из-за вспышек сверхновых звёзд.
Возникновение жизни — следующий этап развития Вселенной, знаменующий, что вещество теперь может самоорганизовываться, а не зависеть во всём от внешних условий.
Полное видео: ☄️ Профессор Лоуренс Краусс : Возникновение Вселенной
#физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
🔥49👍33❤10🤯3⚡2❤🔥1👏1💯1🙈1😨1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif
💡 Physics.Math.Code // @physics_lib
🔥88👍25❤🔥14❤11🤔7⚡2🌚1
Media is too big
VIEW IN TELEGRAM
⚫️ Танцы на грани тьмы: это конец физики? // In Search of the Dark: The End of Physics? [2015] 💥
С 1929 года, когда Эдвин Хаббл открыл расширение Вселенной, наука постоянно узнает всё более мелкие детали событий далекого прошлого. Выяснилось, что нынешний мир родился 13.8 млрд. лет назад из очень горячей материи после Большого Взрыва. Так же выяснилось, что элементы, из которых сформирована Вселенная, атомы, фотоны, нейтроны, в свою очередь, состоят из кварков, бозонов и лептонов. Космология и физика элементарных частиц, казалось, все нам объяснят. Но... у них не получается. Некая энергия ставит под сомнение самые незыблемые основы физики. Получается, что 95% Вселенной состоит из невидимого и непонятного вещества. Эти сущности наука называет тёмной материей и тёмной энергией. Миллиарды долларов! Тысячи предположений и теорий! И все ради одной цели - узнать, что же такое чёрная материя! Ответ на этот вопрос позволит разгадать космические головоломки и решить ряд острых проблем в физике. Но что если ученые не найдут то, что ищут? Что если это конец физики?
#физика #видеоуроки #наука #научные_фильмы #physics #космология #астрономия
💡 Physics.Math.Code // @physics_lib
С 1929 года, когда Эдвин Хаббл открыл расширение Вселенной, наука постоянно узнает всё более мелкие детали событий далекого прошлого. Выяснилось, что нынешний мир родился 13.8 млрд. лет назад из очень горячей материи после Большого Взрыва. Так же выяснилось, что элементы, из которых сформирована Вселенная, атомы, фотоны, нейтроны, в свою очередь, состоят из кварков, бозонов и лептонов. Космология и физика элементарных частиц, казалось, все нам объяснят. Но... у них не получается. Некая энергия ставит под сомнение самые незыблемые основы физики. Получается, что 95% Вселенной состоит из невидимого и непонятного вещества. Эти сущности наука называет тёмной материей и тёмной энергией. Миллиарды долларов! Тысячи предположений и теорий! И все ради одной цели - узнать, что же такое чёрная материя! Ответ на этот вопрос позволит разгадать космические головоломки и решить ряд острых проблем в физике. Но что если ученые не найдут то, что ищут? Что если это конец физики?
Великобритания, США
BBC Science Production, Science Channel
Документальный, космология
#физика #видеоуроки #наука #научные_фильмы #physics #космология #астрономия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤13🤔11🔥8✍1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Что произойдёт, если поместить нейтронную звезду рядом с Солнечной системой?
Пульса́р — космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.
Первый пульсар был открыт в июле 1967 года Джоселин Белл, аспиранткой Энтони Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета, на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Современные названия этого пульсара — PSR B1919+21 или PSR J1921+2153. Результаты наблюдений несколько месяцев хранились в тайне, а первому открытому пульсару присвоили имя LGM-1 (сокр. от англ. Little Green Men — «маленькие зелёные человечки»). Такое название было связано с предположением, что эти строго периодические импульсы радиоизлучения имеют искусственное происхождение. Кроме того, вскоре группа Хьюиша нашла ещё 3 источника аналогичных сигналов.
Только в феврале 1968 года в журнале «Nature» появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой. Сообщение вызвало научную сенсацию. К 1 января 1969 года число обнаруженных различными обсерваториями мира объектов, получивших название пульсаров, достигло 27:16. Число посвящённых им публикаций в первые же годы после открытия составило несколько сотен. Первый пульсар, обнаруженный советскими астрономами — PP 0943:16 (современное обозначение — PSR B0943+10) в созвездии Льва, открытый на Радиоастрономической станции ФИАН в г. Пущино в декабре 1968 года. Доплеровское смещение частоты (характерное для источника, совершающего орбитальное движение вокруг звезды) обнаружено не было. В числе прочих теорий (гипотеза Иосифа Шкловского и др.) было предложено рассматривать пульсары как своего рода сверхмощные «маяки» внеземных цивилизаций. Однако вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара.
Нейтронная звезда — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее в основном из нейтронной сердцевины, покрытой сравнительно тонкой (около 1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8⋅10¹⁷ кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерного вещества, возникающее за счёт взаимодействия нейтронов. #физика #механика #наука #physics #science #космос #астрономия #научные_фильмы
☄️ Профессор Лоуренс Краусс : Возникновение Вселенной
💡 Physics.Math.Code // @physics_lib
Пульса́р — космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.
Первый пульсар был открыт в июле 1967 года Джоселин Белл, аспиранткой Энтони Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета, на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Современные названия этого пульсара — PSR B1919+21 или PSR J1921+2153. Результаты наблюдений несколько месяцев хранились в тайне, а первому открытому пульсару присвоили имя LGM-1 (сокр. от англ. Little Green Men — «маленькие зелёные человечки»). Такое название было связано с предположением, что эти строго периодические импульсы радиоизлучения имеют искусственное происхождение. Кроме того, вскоре группа Хьюиша нашла ещё 3 источника аналогичных сигналов.
Только в феврале 1968 года в журнале «Nature» появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой. Сообщение вызвало научную сенсацию. К 1 января 1969 года число обнаруженных различными обсерваториями мира объектов, получивших название пульсаров, достигло 27:16. Число посвящённых им публикаций в первые же годы после открытия составило несколько сотен. Первый пульсар, обнаруженный советскими астрономами — PP 0943:16 (современное обозначение — PSR B0943+10) в созвездии Льва, открытый на Радиоастрономической станции ФИАН в г. Пущино в декабре 1968 года. Доплеровское смещение частоты (характерное для источника, совершающего орбитальное движение вокруг звезды) обнаружено не было. В числе прочих теорий (гипотеза Иосифа Шкловского и др.) было предложено рассматривать пульсары как своего рода сверхмощные «маяки» внеземных цивилизаций. Однако вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара.
Нейтронная звезда — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее в основном из нейтронной сердцевины, покрытой сравнительно тонкой (около 1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8⋅10¹⁷ кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерного вещества, возникающее за счёт взаимодействия нейтронов. #физика #механика #наука #physics #science #космос #астрономия #научные_фильмы
☄️ Профессор Лоуренс Краусс : Возникновение Вселенной
💡 Physics.Math.Code // @physics_lib
🔥69👍44😱19❤11⚡3✍3🥰2🤔2🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🪐 Космическое пространство ☄️
Космос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно ионы и атомы водорода), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.
▪️ «Космос есть внутри нас, мы сделаны из звёздного вещества, мы — это способ, которым Космос познаёт себя» (Карл Саган).
▪️ «Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Одно созерцание Космоса потрясает: дрожь бежит по спине, перехватывает горло, и появляется чувство, слабое, как смутное воспоминание, будто падаешь с высоты. Мы сознаём, что прикасаемся к величайшей из тайн» (Карл Саган).
▪️ «Космос разумен. Нами распоряжается, над нами господствует космос» (Константин Циолковский).
▪️ «Космос располагает безграничным запасом времени, это не просто означает, что может произойти всё, что угодно. Это означает, что всё когда-нибудь действительно произойдёт» (Эрленд Лу).
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
Космос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно ионы и атомы водорода), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.
▪️ «Космос есть внутри нас, мы сделаны из звёздного вещества, мы — это способ, которым Космос познаёт себя» (Карл Саган).
▪️ «Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Одно созерцание Космоса потрясает: дрожь бежит по спине, перехватывает горло, и появляется чувство, слабое, как смутное воспоминание, будто падаешь с высоты. Мы сознаём, что прикасаемся к величайшей из тайн» (Карл Саган).
▪️ «Космос разумен. Нами распоряжается, над нами господствует космос» (Константин Циолковский).
▪️ «Космос располагает безграничным запасом времени, это не просто означает, что может произойти всё, что угодно. Это означает, что всё когда-нибудь действительно произойдёт» (Эрленд Лу).
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
👍136🔥48❤33❤🔥7🤩6😍6😎6🤨3🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
☄️ Видманштеттеновы фигуры 🪐
Видманштеттенова структура — разновидность металлографической структуры сплавов, отличающаяся геометрически правильным расположением элементов структуры в виде пластин или игл внутри составляющих сплав кристаллических зёрен.
Присутствие Видманштеттеновой структуры является индикатором медленного охлаждения материала в космической среде, что позволяет идентифицировать метеориты среди других типов железа и сплавов.
Также термин «Видманштеттенова структура» применяется для характеристики структуры сильно перегретой или литой стали, в которой выделяющийся из аустенита избыточный феррит располагается вдоль октаэдрических плоскостей кристаллов аустенита. В настоящее время употребляется при описании других геометрически упорядоченных структур в сплавах.
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
Видманштеттенова структура — разновидность металлографической структуры сплавов, отличающаяся геометрически правильным расположением элементов структуры в виде пластин или игл внутри составляющих сплав кристаллических зёрен.
Присутствие Видманштеттеновой структуры является индикатором медленного охлаждения материала в космической среде, что позволяет идентифицировать метеориты среди других типов железа и сплавов.
Также термин «Видманштеттенова структура» применяется для характеристики структуры сильно перегретой или литой стали, в которой выделяющийся из аустенита избыточный феррит располагается вдоль октаэдрических плоскостей кристаллов аустенита. В настоящее время употребляется при описании других геометрически упорядоченных структур в сплавах.
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
👍55🔥22❤14🤯3
В космосе человечество сталкивается с экстремальными температурами — ледяным холодом и огненной жарой. Благодаря инновационным методам защиты и технологическому прогрессу, астронавты и космические аппараты смогли справиться с суровыми условиями. Разбираемся, какая температура в космосе и от чего она зависит.
Температура — это измерение скорости, с которой движутся частицы, а тепло — количество энергии, которой обладают частицы объекта. В космосе нет четкой температуры, так как нет воздуха, который мог бы передавать тепло.
Но космос не является полностью вакуумным. Хотя космическое пространство очень разреженное, там все равно присутствуют различные частицы и газы, которые влияют на окружающие объекты и процессы.
После Большого Взрыва около 13,8 млрд лет назад Вселенная была горячей и плотной, заполненной высокотемпературным газом и энергичными фотонами. С расширением Вселенной газ и фотоны также расширялись и охлаждались. Приблизительно через 380 000 лет произошла рекомбинация, когда электроны и протоны объединились, образуя стабильные атомы, что привело к освобождению пространства и прозрачности Вселенной для света.
Свободные фотоны, которые возникли в результате рекомбинации, постепенно остывали из-за расширения Вселенной. Результатом этого охлаждения стало реликтовое излучение, заполняющее весь космос в диапазоне микроволновых волн. Его температура составляет около −270,45°C.
В вакууме, где отсутствует воздух или другие частицы для передачи тепла путем проводимости и конвекции, тепло может передаваться только через излучение. Тепловое излучение — это электромагнитные волны, которые возникают в результате объединения элементарных частиц, таких как фотоны, электроны и протоны. Фотоны и другие элементарные частицы могут излучаться Солнцем и другими объектами космоса. Солнечные лучи содержат электромагнитные волны, включая инфракрасное, видимое и ультрафиолетовое излучение. Когда эти лучи попадают на поверхность объекта, они поглощаются, что приводит к нагреванию. Интенсивность нагрева зависит от свойств поверхности объекта и его положения относительно Солнца. Если всю энергию, что доходит от Солнца до Земли принять за 100%, то поверхностью поглощается 48%.
Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 121 . Теневая сторона охлаждена до −157°C. Внутри МКС поддерживается комфортный температурный режим для астронавтов, примерно в диапазоне 20−25°C, благодаря системам отопления и охлаждения, которые регулируют условия внутри станции. Температура в открытом космосе может быть суровой для человека, несмотря на то, что вакуум космоса не способен отнимать тепло напрямую из-за отсутствия воздуха или других частиц для проводимости или конвекции, а тепловая потеря через контакт с окружающей средой минимальна. Космические скафандры и аппараты обладают теплоизоляцией, чтобы минимизировать потерю тепла. Они также имеют системы регулирования температуры, включающие обогрев и охлаждение. Чтобы справиться с экстремальной жарой или холодом, большинство космических скафандров изолированы слоями ткани (неопреном, гор-тексом, дакроном) и покрыты отражающими внешними слоями (майларом или белой тканью). #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
Фильмы про космос:
🚀 Космонавтика и астрономия
☄️ Зачем нам Луна?
💥 Астрономия. Луна 1989 Центральное телевидение
🔵 Географическая оболочка [1976]
🌖 Луна — что это? [1973] Центральное телевидение
🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм
🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос
🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне
🫧 Фазы Луны
⚫️ Бессердечная гравитация [ Алексей Семихатов ]
🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто
🪐 Вся правда об изучении Венеры зондами из СССР
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82❤28🔥16👏3🆒3🙈2👻1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8⋅10¹⁷ кг/м3). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерного вещества, возникающее за счёт взаимодействия нейтронов.
Многие нейтронные звёзды обладают чрезвычайно высокой скоростью осевого вращения, — до нескольких сотен оборотов в секунду, и чрезвычайно сильным магнитным полем — до 10¹¹ Тл. По современным представлениям, нейтронные звёзды возникают в результате вспышек сверхновых звёзд. Любая звезда главной последовательности с начальной массой, более чем в 8 раз превышающей массу Солнца (M⊙), может в процессе эволюции превратиться в нейтронную звезду. По мере эволюции звезды в её недрах выгорает весь водород, и звезда сходит с главной последовательности. Некоторое время энерговыделение в звезде обеспечивается синтезом более тяжёлых ядер из ядер гелия, но этот синтез заканчивается после того, как все более лёгкие ядра превратятся в ядра с атомным номером, близким к атомному номеру железа — элементам с наибольшей энергией связи ядер. Когда все ядерное топливо в активной зоне израсходовано, активная зона поддерживается от гравитационного сжатия только давлением вырожденного электронного газа.
Нейтронные звёзды — один из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями. Впервые мысль о существовании звёзд с увеличенной плотностью ещё до открытия нейтрона, сделанного Чедвиком в начале февраля 1932 года, высказал известный советский учёный Лев Ландау. Так, в своей статье «О теории звёзд», написанной в феврале 1931 года, но по неизвестным причинам запоздало опубликованной только 29 февраля 1932 года — более чем через год, он пишет:
«Мы ожидаем, что всё это [нарушение законов квантовой механики] должно проявляться, когда плотность материи станет столь большой, что атомные ядра придут в тесный контакт, образовав одно гигантское ядро»
. #физика #механика #physics #science #астрономия #космос #наука #опыты #эксперименты #астрофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤🔥53👍48🔥9✍6❤5🤯2
Media is too big
VIEW IN TELEGRAM
🌘 О радиации на Луне ☢️
Исследование, опубликованное в журнале Science, впервые рассчитывает, какой будет суточная доза радиации для астронавтов. Выяснилось, что они столкнутся с уровнем радиации почти в три раза выше, чем на МКС. Длительное воздействие излучения создает значительные риски для здоровья, включая катаракту, рак и заболевания центральной нервной системы. В связи с этим ученые предлагают строить базу под лунной поверхностью. Согласно планам НАСА, постоянная база на Луне должна появиться к 2030-м годам. Она позволит астронавтам проводить длительные экспедиции на южный полюс Луны.
Исследователи установили, что, если участники лунных миссий будут проводить на спутнике год или два, то они столкнутся с угрозой радиации. Однако, по их словам, база, защищенная достаточным количеством лунного грунта, должна стать безопасным убежищем. По подсчетам ученых, это должен быть слой толщиной около 76 см. При таких условиях уровень радиации будет примерно равен земному. Радиацию на поверхности Луны пытались измерить еще астронавты миссии «Аполлон», которые в 1960-х и 1970-х годах брали с собой дозиметры. Но приборы смогли показать только общее облучение, которому астронавты подвергались в течение всего времени пребывания в космосе, от взлета и до посадки. Однако команда Виммер-Швайнгрубера смогла задокументировать дневные уровни радиации на поверхности Луны, проанализировав данные, собранные китайским космическим кораблем «Чанъэ-4». Исследователи разделили общую дозу облучения на время, в течение которого инструмент собирал данные, чтобы рассчитать дневную общую дозу. Выяснилось, что на поверхности Луны человек будет подвергаться воздействию 1369 микрозивертов радиации в сутки (почти две земных недели), что примерно в 200 раз выше дневного уровня на Земле. Нужно отметить, что атмосфера Луны представляет собой крайне разреженную газовую оболочку, плотность которой в 10 трлн раз меньше по сравнению с земной. Атмосфера состоит из водорода, гелия, неона и аргона. Она практически не защищает Луну от воздействия радиации. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
Фильмы про космос:
🚀 Космонавтика и астрономия
☄️ Зачем нам Луна?
💥 Астрономия. Луна 1989 Центральное телевидение
🔵 Географическая оболочка [1976]
🌖 Луна — что это? [1973] Центральное телевидение
🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм
🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос
🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне
🫧 Фазы Луны
⚫️ Бессердечная гравитация [ Алексей Семихатов ]
🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто
🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс
🪐 Вся правда об изучении Венеры зондами из СССР
💡 Physics.Math.Code // @physics_lib
Исследование, опубликованное в журнале Science, впервые рассчитывает, какой будет суточная доза радиации для астронавтов. Выяснилось, что они столкнутся с уровнем радиации почти в три раза выше, чем на МКС. Длительное воздействие излучения создает значительные риски для здоровья, включая катаракту, рак и заболевания центральной нервной системы. В связи с этим ученые предлагают строить базу под лунной поверхностью. Согласно планам НАСА, постоянная база на Луне должна появиться к 2030-м годам. Она позволит астронавтам проводить длительные экспедиции на южный полюс Луны.
Исследователи установили, что, если участники лунных миссий будут проводить на спутнике год или два, то они столкнутся с угрозой радиации. Однако, по их словам, база, защищенная достаточным количеством лунного грунта, должна стать безопасным убежищем. По подсчетам ученых, это должен быть слой толщиной около 76 см. При таких условиях уровень радиации будет примерно равен земному. Радиацию на поверхности Луны пытались измерить еще астронавты миссии «Аполлон», которые в 1960-х и 1970-х годах брали с собой дозиметры. Но приборы смогли показать только общее облучение, которому астронавты подвергались в течение всего времени пребывания в космосе, от взлета и до посадки. Однако команда Виммер-Швайнгрубера смогла задокументировать дневные уровни радиации на поверхности Луны, проанализировав данные, собранные китайским космическим кораблем «Чанъэ-4». Исследователи разделили общую дозу облучения на время, в течение которого инструмент собирал данные, чтобы рассчитать дневную общую дозу. Выяснилось, что на поверхности Луны человек будет подвергаться воздействию 1369 микрозивертов радиации в сутки (почти две земных недели), что примерно в 200 раз выше дневного уровня на Земле. Нужно отметить, что атмосфера Луны представляет собой крайне разреженную газовую оболочку, плотность которой в 10 трлн раз меньше по сравнению с земной. Атмосфера состоит из водорода, гелия, неона и аргона. Она практически не защищает Луну от воздействия радиации. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
Фильмы про космос:
🚀 Космонавтика и астрономия
☄️ Зачем нам Луна?
💥 Астрономия. Луна 1989 Центральное телевидение
🔵 Географическая оболочка [1976]
🌖 Луна — что это? [1973] Центральное телевидение
🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм
🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос
🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне
🫧 Фазы Луны
⚫️ Бессердечная гравитация [ Алексей Семихатов ]
🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто
🪐 Вся правда об изучении Венеры зондами из СССР
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥19❤6🤨4😱3✍1❤🔥1🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🧊 Аэрогели — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а как правило, 95—99,8 % объёма, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.
На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны.
По внешнему виду кварцевые аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают аэрогели на основе оксидов алюминия (Al₂O₃), циркония (ZrO₂) и титана (TiO₂). Аэрогели из других оксидов металлов могут иметь различный цвет и прозрачность; так, железооксидный аэрогель непрозрачен и имеет цвет, сходный со ржавчиной, ванадиевооксидный аэрогель непрозрачен, оливково-зелёного цвета; хромооксидный аэрогель имеет тёмно-зелёный или тёмно-синий цвет, а аэрогели на основе оксидов редкоземельных металлов прозрачны (оксид самария жёлтый, оксид неодима фиолетовый, оксиды гольмия и эрбия — розовые). Углеродные аэрогели имеют глубокий чёрный цвет, поглощая 99,7 % падающего света. Температура плавления кварцевого аэрогеля составляет 1200 °C.
⚡️ Углеродные аэрогели (аэрографиты) состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счёт очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) ёмкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 250 до 14 300 нм, что делает их эффективными поглотителями солнечного света. Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения. #физика #physics #science #аэрогель #химия #наука #астрономия #астрофизика
💡 Physics.Math.Code // @physics_lib
Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а как правило, 95—99,8 % объёма, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.
На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны.
По внешнему виду кварцевые аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают аэрогели на основе оксидов алюминия (Al₂O₃), циркония (ZrO₂) и титана (TiO₂). Аэрогели из других оксидов металлов могут иметь различный цвет и прозрачность; так, железооксидный аэрогель непрозрачен и имеет цвет, сходный со ржавчиной, ванадиевооксидный аэрогель непрозрачен, оливково-зелёного цвета; хромооксидный аэрогель имеет тёмно-зелёный или тёмно-синий цвет, а аэрогели на основе оксидов редкоземельных металлов прозрачны (оксид самария жёлтый, оксид неодима фиолетовый, оксиды гольмия и эрбия — розовые). Углеродные аэрогели имеют глубокий чёрный цвет, поглощая 99,7 % падающего света. Температура плавления кварцевого аэрогеля составляет 1200 °C.
⚡️ Углеродные аэрогели (аэрографиты) состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счёт очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) ёмкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 250 до 14 300 нм, что делает их эффективными поглотителями солнечного света. Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения. #физика #physics #science #аэрогель #химия #наука #астрономия #астрофизика
💡 Physics.Math.Code // @physics_lib
👍70🔥21⚡7❤7❤🔥4
Научно-популярная лекция о нейтронных звёздах: об истории их обнаружения, их видах, строении, способах изучения и т.п.
Сергей Борисович Попов — кандидат физико-математических наук, научный сотрудник Государственного Астрономического института имени Штернберга.
Специализируется в области астрофизики компактных объектов (нейтронных звезд, черных дыр).
Автор около ста научных и множества научно-популярных публикаций.
0:00:00 1. Массы белых карликов и нейтронных звезд
0:06:39 2. Экстремальные источники
0:08:32 3. Предсказание нейтронных звезд
0:13:04 4. Рождение нейтронных звезд. Рентгеновские источники
0:15:44 5. Ракетные эксперименты
0:17:39 6. Тесные двойные системы
0:21:39 7. Открытие нейтронных звезд. Пульсары
0:32:14 8. Оценка параметров нейтронных звезд
0:41:00 9. Новый зоопарк нейтронных звезд. Магнитары
0:47:22 10. Центральные компактные объекты в остатках сверхновых
0:52:19 11. Чем важны нейтронные звезды
0:54:54 12. Внутреннее строение нейтронных звезд
1:08:35 13. Измерение массы
1:16:48 14. Кварковые звезды
1:20:29 15. Остывание нейтронных звезд. Кинематический возраст
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33❤🔥12🔥7❤2🥰2😱2🗿2
📚 Подборка книг по Астрономии, Астрофизике, Космосу
💾 Скачать книги
Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг
☕️ Для тех, кто захочет задонать на кофе:
ВТБ:
+79616572047
(СБП) Сбер: +79026552832
(СБП) ЮMoney: 410012169999048
💡 Physics.Math.Code // @physics_lib
🔥36👍24❤10⚡1🤩1
🌘 Какой цвет Луны?
На снимке астрофотографа Рами Аммоуна мы можем рассмотреть и серо-коричневую гамму Орбитра и желтоватый блеск созданный атмосферой для объекта в зените и голубые, бордовые и даже желто-зеленые участки. И все-таки она цветная! Настоящие ли это цвета? Цветовая насыщенность снимка немного увеличена, но геология Луны подсказывает, что это не «выдумка» камеры. Более светлые поверхности - это лунные нагорья, которые называют материками, в то время как более темные области называют морями, несмотря на отсутствие жидкой воды. Материки бедны железом и богаты кальцием (вот откуда белый цвет), поэтому они светлее. Доминирующая порода в лунном нагорье называется анортозитом. Лунные моря состоят из базальтов - темных вулканических пород, которые образуются в результате быстрого охлаждения лавы, богатой магнием и железом. Получается, лунные моря когда-то были морями из лавы. Но базальты не всегда черные. Иногда они содержат оливин, который, как нетрудно догадаться, придает некоторым участкам Луны едва заметный оливковый оттенок. Так же серый реголит может иметь красные оттенки из-за оксида железа, а синие из-за содержания титана. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
Фильмы про космос:
🚀 Космонавтика и астрономия
☄️ Зачем нам Луна?
💥 Астрономия. Луна 1989 Центральное телевидение
🔵 Географическая оболочка [1976]
🌖 Луна — что это? [1973] Центральное телевидение
🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм
🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос
🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне
🫧 Фазы Луны
⚫️ Бессердечная гравитация [ Алексей Семихатов ]
🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто
🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс
🪐 Вся правда об изучении Венеры зондами из СССР
📷 Снимок сделан 3 апреля 2025 года это изображение раскрывает настоящие цвета нашей Луны.
💡 Physics.Math.Code // @physics_lib
На снимке астрофотографа Рами Аммоуна мы можем рассмотреть и серо-коричневую гамму Орбитра и желтоватый блеск созданный атмосферой для объекта в зените и голубые, бордовые и даже желто-зеленые участки. И все-таки она цветная! Настоящие ли это цвета? Цветовая насыщенность снимка немного увеличена, но геология Луны подсказывает, что это не «выдумка» камеры. Более светлые поверхности - это лунные нагорья, которые называют материками, в то время как более темные области называют морями, несмотря на отсутствие жидкой воды. Материки бедны железом и богаты кальцием (вот откуда белый цвет), поэтому они светлее. Доминирующая порода в лунном нагорье называется анортозитом. Лунные моря состоят из базальтов - темных вулканических пород, которые образуются в результате быстрого охлаждения лавы, богатой магнием и железом. Получается, лунные моря когда-то были морями из лавы. Но базальты не всегда черные. Иногда они содержат оливин, который, как нетрудно догадаться, придает некоторым участкам Луны едва заметный оливковый оттенок. Так же серый реголит может иметь красные оттенки из-за оксида железа, а синие из-за содержания титана. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science
Фильмы про космос:
🚀 Космонавтика и астрономия
☄️ Зачем нам Луна?
💥 Астрономия. Луна 1989 Центральное телевидение
🔵 Географическая оболочка [1976]
🌖 Луна — что это? [1973] Центральное телевидение
🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм
🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос
🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне
🫧 Фазы Луны
⚫️ Бессердечная гравитация [ Алексей Семихатов ]
🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто
🪐 Вся правда об изучении Венеры зондами из СССР
📷 Снимок сделан 3 апреля 2025 года это изображение раскрывает настоящие цвета нашей Луны.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍58🔥22❤11🙈2⚡1😍1