Physics.Math.Code
142K subscribers
5.18K photos
2.01K videos
5.8K files
4.41K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка

Набор
из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики

💡 Physics.Math.Code // @physics_lib
👍5414🔥131😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Сварка трением, иначе фрикционная сварка. Несколько патентов на эту тему было ещё в 20е годы в Великобритании, СССР и Веймарской республике. Первое детальное описание и эксперименты по промышленному применению: СССР 1956 год. С начала 60х метод широко внедряется в Европе СССР и США. В дальнейшем были разработано несколько методов фрикционной сварки. Применяется в автомобилестроении и авиации, что свидетельствует о более высокой надёжности, в сравнении с другими методами, в том числе это связано с перемешиванием материалов и отсутствием перегрева, то есть отсутствием шва, а следовательно и его дефектов.

И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо

Как сделать сварочный аппарат из карандаша и лезвия

Какой флюс для пайки самый лучший на сегодняшний день?

🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5126🔥21🆒2🗿1
Media is too big
VIEW IN TELEGRAM
💦Гидротаранный насос (или просто гидротаран) — это гениальное и практически вечное устройство, которое использует энергию гидравлического удара, а гидродуар — это его ключевой, «умный» элемент. Гидротаран использует кинетическую энергию небольшого, но непрерывного потока воды (например, из ручья), чтобы поднять небольшую часть этой воды на значительную высоту (намного выше уровня источника). Он делает это без каких-либо двигателей или внешних источников энергии, используя лишь явление гидравлического удара.

Основные компоненты:
1. Подающая труба (нисходящая труба): Длинная труба, по которой вода течет от источника (например, пруда) к насосу под уклон.
2. Отбойный клапан («гидродуар»): Это «сердце» гидротарана. Обычно это подпружиненный или утяжеленный клапан, который может быстро открываться и закрываться.
3. Воздушный колпак (воздушный клапан): Герметичная камера, частично заполненная воздухом.
4. Нагнетательный (обратный) клапан: Клапан, который пропускает воду только в одну сторону — в напорный трубопровод.
5. Напорный трубопровод (выходная труба): Труба, по которой вода поднимается к потребителю.

Работа гидротарана — это непрерывно повторяющийся цикл из двух фаз.

▪️Фаза 1: Разгон потока и закрытие гидродуара
▫️Шаг 1: Отбойный клапан (гидродуар) изначально открыт. Вода под действием силы тяжести свободно вытекает через него из подающей трубы.
▫️Шаг 2: Скорость потока в подающей трубе постепенно увеличивается. В какой-то момент она становится достаточно высокой, чтобы преодолеть силу пружины или груза гидродуара.
▫️Шаг 3: Гидродуар резко захлопывается. Вот здесь и начинается магия.
Роль гидродуара на этом этапе: Создать мгновенную остановку мощного потока воды. Это "умный" клапан, который реагирует именно на достижение потока определенной скорости.

▪️Фаза 2: Гидравлический удар и накачка
▫️Шаг 4: Резкая остановка потока вызывает знаменитый гидравлический удар. Кинетическая энергия движущейся массы воды мгновенно преобразуется в энергию давления. Даление перед закрытым гидродуаром скачкообразно возрастает в десятки раз.
▫️Шаг 5: Это резко возросшее давление открывает нагнетательный клапан. Вода под высоким давлением врывается в воздушный колпак.
▫️Шаг 6: В воздушном колпаке вода сжимает воздух, который действует как амортизатор и аккумулятор энергии. Он сглаживает ударный импульс и создает постоянное давление, которое выталкивает воду из колпака в напорный трубопровод, заставляя ее подниматься вверх.
▫️Шаг 7: Давление в подающей трубе падает. Нагнетательный клапан под действием силы тяжести и давления из напорной трубы закрывается, не давая воде вернуться обратно.

▪️Возврат к началу цикла
▫️Шаг 8: Как только давление перед гидродуаром падает ниже определенного уровня, пружина или груз снова открывают его.
▫️Шаг 9: Вода снова начинает свободно вытекать, скорость потока нарастает, и цикл повторяется с Шага 1.

Гидродуар — это не просто клапан. Это преобразователь энергии:
▫️Он аккумулирует энергию, позволяя потоку разогнаться (когда открыт).
▫️Он преобразует кинетическую энергию потока в энергию давления, мгновенно останавливая его (когда закрывается).
▫️Без этого быстрого закрытия не было бы мощного гидравлического удара, и насос не работал бы.

Преимущества:
Полная автономность. Не требует топлива или электроэнергии.
Чрезвычайная простота и долговечность. Почти нечему ломаться.
Надежность. Может работать годами без обслуживания.
Недостатки:
Низкий КПД (обычно 10-60%). Большая часть воды просто уходит через гидродуар.
Требует определенных условий: постоянного источника воды с небольшим перепадом высот и места для установки длинной подающей трубы.
Создает шум.

📘 Гидравлика и аэродинамика [1975] Альтшуль, Киселев

💧 Гидростатический парадокс или парадокс Паскаля

😠 Принцип работы гидравлического пресса

⚙️ Принцип работы гидравлической машины

Задача: «Вихревая струя космического садовника»

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥3215🤔4🤝421
This media is not supported in your browser
VIEW IN TELEGRAM
💪 Не мускулами, а умом: как гидравлика умножает наши силы

Когда нужно поднять многоэтажный автобус для замены колеса или плавно опустить шасси огромного самолета, на помощь приходит она — гидравлика.
Принцип прост до гениальности: сила, приложенная к одному участку жидкости, передается без изменения в любую другую точку. Вся хитрость — в разной площади поршней.

Представьте:
▪️ У вас есть два соединенных шприца — маленький (1 см²) и большой (100 см²).
▪️ Если надавить на малый поршень с силой всего в 1 кг, то согласно закону Паскаля, давление в жидкости распространится повсюду.
▪️ На большой поршень это же давление будет давить с гораздо большей силой: Сила = Давление × Площадь. В нашем примере — уже 100 кг!

Именно так работают домкраты, прессы и тормозные системы. Мы вкладываем маленькое усилие, а на выходе получаем огромное. Мы не создаем энергию из ниоткуда, мы просто меняем соотношение сил, жертвуя расстоянием (малый поршень надо прожать много раз, чтобы большой поднялся немного).

🔍 Исторический факт: А знаете ли вы, что фундамент этой технологии заложил выдающийся французский ученый Блез Паскаль? В 1648 году он провел эффектный эксперимент, впоследствии названный «Паскалевой бочкой».

Он вставил в закрытую бочку, наполненную водой, очень длинную и тонкую вертикальную трубку. Поднявшись на балкон, он влил в эту трубку всего несколько кружек воды. Давление, созданное маленьким столбом жидкости в узкой трубке, передалось по всем направлениям и преумножилось так, что мощные дубовые доски бочки не выдержали и она треснула. Этот наглядный опыт блестяще подтвердил его теорию, а сегодня его именем названа единица измерения давления.
Так что, в следующий раз, видя работу подъемного крана, вспомните о силе воды и гениальном французе XVII века! 🚀 #гидравлика #физика #историянауки #технологии #physics #инженерия #science

💦Гидротаранный насос (или просто гидротаран)

💧 Гидростатический парадокс или парадокс Паскаля

😠 Принцип работы гидравлического пресса

⚙️ Принцип работы гидравлической машины

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66🔥2718❤‍🔥2🤩2🤨2🤯1😱1
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов

Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука

💡 Physics.Math.Code // @physics_lib
6