Physics.Math.Code
142K subscribers
5.18K photos
2K videos
5.8K files
4.41K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
ЧЕБУРНЕТУ БЫТЬ!🤭

Медный купол по-немногу накрывает, а ты даже не знаешь как действовать?


Ниже даю список каналов спецов из сферы кибербеза, которые уже придумали все за тебя:

HACK WARRIOR. – парни уже давно сели на измену и активно постируют контент на тему защиты своих личных данных в интернете, чтобы не сел ты.

secure sector – канал безопасника однажды сильно пострадавшего от халатного отношения к своей интернет-гигиене. Собственно, поэтому и стал безопасником...

INFOSEC LIZARD – твой личный криптонит от любых кибер-угроз в сети.

Я бы не хотел, чтобы в будущем ты пожалел о том, что пролистал этот пост. Оставайся в безопасности.
🤔37🗿27🤨11👍8👻7😨65🙈4❤‍🔥2😭2🫡2
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Что будет если на электроды, между которыми проскакивает дуга (высокая напряжения) прикрутить мощные неодимовые магниты? Будет ли плазма реагировать? 🧲

Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.

На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).

Что происходит в дуге:

1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.

2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.

3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.

Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:

▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.

⚡️Практическое применение и предостережения:

1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.

Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥27👍1665🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка

Набор
из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики

💡 Physics.Math.Code // @physics_lib
👍52🔥11101😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Сварка трением, иначе фрикционная сварка. Несколько патентов на эту тему было ещё в 20е годы в Великобритании, СССР и Веймарской республике. Первое детальное описание и эксперименты по промышленному применению: СССР 1956 год. С начала 60х метод широко внедряется в Европе СССР и США. В дальнейшем были разработано несколько методов фрикционной сварки. Применяется в автомобилестроении и авиации, что свидетельствует о более высокой надёжности, в сравнении с другими методами, в том числе это связано с перемешиванием материалов и отсутствием перегрева, то есть отсутствием шва, а следовательно и его дефектов.

И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо

Как сделать сварочный аппарат из карандаша и лезвия

Какой флюс для пайки самый лучший на сегодняшний день?

🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3518🔥14🆒2🗿1
Media is too big
VIEW IN TELEGRAM
💦Гидротаранный насос (или просто гидротаран) — это гениальное и практически вечное устройство, которое использует энергию гидравлического удара, а гидродуар — это его ключевой, «умный» элемент. Гидротаран использует кинетическую энергию небольшого, но непрерывного потока воды (например, из ручья), чтобы поднять небольшую часть этой воды на значительную высоту (намного выше уровня источника). Он делает это без каких-либо двигателей или внешних источников энергии, используя лишь явление гидравлического удара.

Основные компоненты:
1. Подающая труба (нисходящая труба): Длинная труба, по которой вода течет от источника (например, пруда) к насосу под уклон.
2. Отбойный клапан («гидродуар»): Это «сердце» гидротарана. Обычно это подпружиненный или утяжеленный клапан, который может быстро открываться и закрываться.
3. Воздушный колпак (воздушный клапан): Герметичная камера, частично заполненная воздухом.
4. Нагнетательный (обратный) клапан: Клапан, который пропускает воду только в одну сторону — в напорный трубопровод.
5. Напорный трубопровод (выходная труба): Труба, по которой вода поднимается к потребителю.

Работа гидротарана — это непрерывно повторяющийся цикл из двух фаз.

▪️Фаза 1: Разгон потока и закрытие гидродуара
▫️Шаг 1: Отбойный клапан (гидродуар) изначально открыт. Вода под действием силы тяжести свободно вытекает через него из подающей трубы.
▫️Шаг 2: Скорость потока в подающей трубе постепенно увеличивается. В какой-то момент она становится достаточно высокой, чтобы преодолеть силу пружины или груза гидродуара.
▫️Шаг 3: Гидродуар резко захлопывается. Вот здесь и начинается магия.
Роль гидродуара на этом этапе: Создать мгновенную остановку мощного потока воды. Это "умный" клапан, который реагирует именно на достижение потока определенной скорости.

▪️Фаза 2: Гидравлический удар и накачка
▫️Шаг 4: Резкая остановка потока вызывает знаменитый гидравлический удар. Кинетическая энергия движущейся массы воды мгновенно преобразуется в энергию давления. Даление перед закрытым гидродуаром скачкообразно возрастает в десятки раз.
▫️Шаг 5: Это резко возросшее давление открывает нагнетательный клапан. Вода под высоким давлением врывается в воздушный колпак.
▫️Шаг 6: В воздушном колпаке вода сжимает воздух, который действует как амортизатор и аккумулятор энергии. Он сглаживает ударный импульс и создает постоянное давление, которое выталкивает воду из колпака в напорный трубопровод, заставляя ее подниматься вверх.
▫️Шаг 7: Давление в подающей трубе падает. Нагнетательный клапан под действием силы тяжести и давления из напорной трубы закрывается, не давая воде вернуться обратно.

▪️Возврат к началу цикла
▫️Шаг 8: Как только давление перед гидродуаром падает ниже определенного уровня, пружина или груз снова открывают его.
▫️Шаг 9: Вода снова начинает свободно вытекать, скорость потока нарастает, и цикл повторяется с Шага 1.

Гидродуар — это не просто клапан. Это преобразователь энергии:
▫️Он аккумулирует энергию, позволяя потоку разогнаться (когда открыт).
▫️Он преобразует кинетическую энергию потока в энергию давления, мгновенно останавливая его (когда закрывается).
▫️Без этого быстрого закрытия не было бы мощного гидравлического удара, и насос не работал бы.

Преимущества:
Полная автономность. Не требует топлива или электроэнергии.
Чрезвычайная простота и долговечность. Почти нечему ломаться.
Надежность. Может работать годами без обслуживания.
Недостатки:
Низкий КПД (обычно 10-60%). Большая часть воды просто уходит через гидродуар.
Требует определенных условий: постоянного источника воды с небольшим перепадом высот и места для установки длинной подающей трубы.
Создает шум.

📘 Гидравлика и аэродинамика [1975] Альтшуль, Киселев

💧 Гидростатический парадокс или парадокс Паскаля

😠 Принцип работы гидравлического пресса

⚙️ Принцип работы гидравлической машины

Задача: «Вихревая струя космического садовника»

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥13🤝3