Physics.Math.Code
142K subscribers
5.18K photos
1.99K videos
5.8K files
4.4K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
❄️ Холоднее некуда? Термодинамика, шкалы и парадокс отрицательной температуры 🔥

Знакомые нам Цельсий и Фаренгейт — продукты своей эпохи.

▪️ Фаренгейт (1724): Даниил Фаренгейт был практиком. За ноль он взял температуру самой холодной зимы в Данциге (смесь льда, воды и нашатыря). Второй точкой стала температура человеческого тела (96°F — да, он немного ошибся). А 32°F для льда и 212°F для кипения воды получились уже потом. Шкала была очень точной для своего времени, но ее точки отсчета кажутся нам сегодня случайными.

▪️ Цельсий (1742): Андерс Цельсий был ученым. Его шкала была гениальной в своей простоте: 0° — таяние льда, 100° — кипение воды (при нормальном давлении, конечно). Все логично и повторяемо. Но это все еще эмпирическая шкала.

🌡 Абсолютная Идея: Лорд Кельвин и ноль

В 19 веке физики поняли: температура — это мера движения молекул. Чем быстрее они двигаются, тем hotter. Логичный вопрос: а что будет, если движение полностью остановить? Уильям Томсон (Лорд Кельвин) предложил абсолютную термодинамическую шкалу (1848). Ее ноль — это температура, при которой тепловое движение прекращается. Это -273.15°C. Теперь мы знаем, что достичь этого нуля невозможно (согласно третьему началу термодинамики), но можно сколь угодно близко подойти.
Интересный факт: Шкала Кельвина не привязана к воде! Она основана на фундаментальных принципах работы идеальных тепловых машин (цикл Карно). Вода с ее точками кипения и замерзания — просто удобный практический эталон.

🥶 Физика на грани фантастики: Отрицательные температуры 🌡

А теперь — самое неинтуитивное. В термодинамике существует понятие отрицательной абсолютной температуры. Нет, это не холоднее абсолютного нуля. Это — горячее любой положительной температуры.

Как это возможно? Забудем на секунду о кинетической энергии. Вспомним про энтропию — меру беспорядка. Обычно, когда вы добавляете энергии системе, молекулы раскачиваются, и энтропия (беспорядок) растет. Но представьте систему с ограниченным количеством энергетических уровней, например, набор атомных спинов в магнитном поле. Есть состояние с низкой энергией (спины в одну сторону) и высокой энергией (спины в другую).

1. При абсолютном нуле все спины в основном состоянии — максимальный порядок.
2. При добавлении энергии спины начинают хаотично переворачиваться — энтропия растет (положительная температура).
3. А что, если мы принудительно перевернем большинство спинов в состояние с высокой энергией? Мы получим снова почти полный порядок (только теперь на "верхнем" уровне), но система будет обладать огромной энергией! Энтропия при этом уменьшается с ростом энергии.

💥 Именно такое состояние, где рост энергии приводит к уменьшению энтропии, и описывается отрицательной абсолютной температурой. Такие системы нестабильны и мгновенно отдают энергию любой системе с положительной температурой. Они — самые горячие объекты во Вселенной в момент своего создания. Вывод: Температура — это не просто цифра на градуснике. Это глубокое понятие, связывающее энергию, порядок и стрелу времени. От причудливых шкал XVIII века до квантовых систем с отрицательной температурой — эта история продолжает удивлять. #термодинамика #физика #наука #температура #physics #science #МКТ #энтропия #факты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥69👍2919🤔7🤯6