🚀 Codex CLI
"Модели o3 и o4-mini настолько сильны в программировании, что мы решили упростить их использование и выпустить новый продукт"" — Codex CLI - написал в своем аккаунт Альтман
💻 Codex CLI — это мощный программирующий агент, который работает локально на вашем компьютере.
- Чат-ориентированная разработка: Позволяет взаимодействовать с вашим репозиторием через диалоговый интерфейс.
- Выполнение кода: Способен запускать код, манипулировать файлами и выполнять итерации прямо в терминале.
- Интеграция с системами контроля версий: Обеспечивает работу под управлением систем контроля версий, таких как Git.
🌟 Полностью open source и уже доступен для скачивания!
https://github.com/openai/codex
@ai_machinelearning_big_data
#AI #OpenSource #CodexCLI #Coding #LLM #DevTools
"Модели o3 и o4-mini настолько сильны в программировании, что мы решили упростить их использование и выпустить новый продукт"" — Codex CLI - написал в своем аккаунт Альтман
💻 Codex CLI — это мощный программирующий агент, который работает локально на вашем компьютере.
- Чат-ориентированная разработка: Позволяет взаимодействовать с вашим репозиторием через диалоговый интерфейс.
- Выполнение кода: Способен запускать код, манипулировать файлами и выполнять итерации прямо в терминале.
- Интеграция с системами контроля версий: Обеспечивает работу под управлением систем контроля версий, таких как Git.
🌟 Полностью open source и уже доступен для скачивания!
npm install -g @openai/codex
https://github.com/openai/codex
@ai_machinelearning_big_data
#AI #OpenSource #CodexCLI #Coding #LLM #DevTools
1❤71👍44🔥7🥰6🗿6😁4🤔4
15 бесплатных книг по Data Science (часть 1)*
1. *Veridical Data Science*
👩🔬 Авторы: Bin Yu & Rebecca L. Barter
Описание: Введение в науку о данных (data science): как область возникла, как она развивается и какую роль играет в современном мире.
🔗 https://vdsbook.com/
2. *Data Science: Theories, Models, Algorithms, and Analytics*
📘 Автор: Sanjiv Ranjan Das
Описание: Учебник по DS с упором на алгоритмы и аналитику.
🔗 https://srdas.github.io/Papers/DSA_Book.pdf
3. *Think Python 3E*
🐍 Автор: Allen B. Downey
Описание: Современное введение в Python с нуля.
🔗 https://greenteapress.com/wp/think-python-3rd-edition/
4. *Python Data Science Handbook*
📊 Автор: Jake VanderPlas
Описание: Практика работы с NumPy, pandas, sklearn и визуализациями.
🔗 https://jakevdp.github.io/PythonDataScienceHandbook/
5. *R for Data Science*
📈 Авторы: Hadley Wickham и др.
Описание: Современный подход к анализу данных в R.
🔗 https://r4ds.hadley.nz/
6. *Think Stats 3E*
📐 Автор: Allen B. Downey
Описание: Статистика через Python и практику.
🔗 https://allendowney.github.io/ThinkStats/
7. *Statistics and Prediction Algorithms Through Case Studies*
📙 Автор: Rafael A. Irizarry
Описание: Кейсы по статистике и прогнозированию с кодом на R.
🔗 https://rafalab.github.io/dsbook/
8. *Bayesian Methods for Hackers*
🧠 Автор: Cameron Davidson-Pilon
Описание: Визуальное введение в байесовский анализ с PyMC.
🔗 https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
9. *Think Bayes 2E*
🔢 Автор: Allen B. Downey
Описание: Пошаговый байесовский подход на Python.
🔗 https://allendowney.github.io/ThinkBayes2/
10. *Data Science at the Command Line*
💻 Автор: Jeroen Janssens
Описание: Unix-инструменты как основа для анализа данных.
🔗 https://datascienceatthecommandline.com/
🔜 Математика для Data Scientist
11. Теория вероятностей
👩🔬 Автор: Чернова Н. И.
Описание: Понятное введение в теорию вероятностей, основа для изучения математической статистики.
🔗 https://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf
12. * Математическая статистика*
👩🔬 Автор: Чернова Н. И.
Описание: Продолжение курса по теории вероятностей (НГУ), покрывающее основы математической статистики: оценки параметров, проверка гипотез, регрессионный анализ.
🔗 https://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf
13. * Курс дифференциального и интегрального исчисления (Том 1)*
👩🔬 Автор: Фихтенгольц Г. М.
Описание: Фундаментальный и классический учебник по основам математического анализа.
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
14.*Векторные исчисления для инженеров*
👩🔬 Автор:Jeffrey R. Chasnov
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
15 .*Theory—Theoretical & Mathematical Foundations ;
👩🔬Daniel A. Roberts, Sho Yaida, Boris Hanin
Описание: Эта книга предлагает теоретический подход к анализу глубинных нейросетей с практической значимостью
🔗https://arxiv.org/abs/2106.10165
📘 Еще больше книг здесь
Сохраняйте себе, чтобы не потерять
@ai_machinelearning_big_data
#books #opensource #freebooks
1. *Veridical Data Science*
👩🔬 Авторы: Bin Yu & Rebecca L. Barter
Описание: Введение в науку о данных (data science): как область возникла, как она развивается и какую роль играет в современном мире.
🔗 https://vdsbook.com/
2. *Data Science: Theories, Models, Algorithms, and Analytics*
📘 Автор: Sanjiv Ranjan Das
Описание: Учебник по DS с упором на алгоритмы и аналитику.
🔗 https://srdas.github.io/Papers/DSA_Book.pdf
3. *Think Python 3E*
🐍 Автор: Allen B. Downey
Описание: Современное введение в Python с нуля.
🔗 https://greenteapress.com/wp/think-python-3rd-edition/
4. *Python Data Science Handbook*
📊 Автор: Jake VanderPlas
Описание: Практика работы с NumPy, pandas, sklearn и визуализациями.
🔗 https://jakevdp.github.io/PythonDataScienceHandbook/
5. *R for Data Science*
📈 Авторы: Hadley Wickham и др.
Описание: Современный подход к анализу данных в R.
🔗 https://r4ds.hadley.nz/
6. *Think Stats 3E*
📐 Автор: Allen B. Downey
Описание: Статистика через Python и практику.
🔗 https://allendowney.github.io/ThinkStats/
7. *Statistics and Prediction Algorithms Through Case Studies*
📙 Автор: Rafael A. Irizarry
Описание: Кейсы по статистике и прогнозированию с кодом на R.
🔗 https://rafalab.github.io/dsbook/
8. *Bayesian Methods for Hackers*
🧠 Автор: Cameron Davidson-Pilon
Описание: Визуальное введение в байесовский анализ с PyMC.
🔗 https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
9. *Think Bayes 2E*
🔢 Автор: Allen B. Downey
Описание: Пошаговый байесовский подход на Python.
🔗 https://allendowney.github.io/ThinkBayes2/
10. *Data Science at the Command Line*
💻 Автор: Jeroen Janssens
Описание: Unix-инструменты как основа для анализа данных.
🔗 https://datascienceatthecommandline.com/
11. Теория вероятностей
👩🔬 Автор: Чернова Н. И.
Описание: Понятное введение в теорию вероятностей, основа для изучения математической статистики.
🔗 https://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf
12. * Математическая статистика*
👩🔬 Автор: Чернова Н. И.
Описание: Продолжение курса по теории вероятностей (НГУ), покрывающее основы математической статистики: оценки параметров, проверка гипотез, регрессионный анализ.
🔗 https://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf
13. * Курс дифференциального и интегрального исчисления (Том 1)*
👩🔬 Автор: Фихтенгольц Г. М.
Описание: Фундаментальный и классический учебник по основам математического анализа.
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
14.*Векторные исчисления для инженеров*
👩🔬 Автор:Jeffrey R. Chasnov
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
15 .*Theory—Theoretical & Mathematical Foundations ;
👩🔬Daniel A. Roberts, Sho Yaida, Boris Hanin
Описание: Эта книга предлагает теоретический подход к анализу глубинных нейросетей с практической значимостью
🔗https://arxiv.org/abs/2106.10165
📘 Еще больше книг здесь
Сохраняйте себе, чтобы не потерять
@ai_machinelearning_big_data
#books #opensource #freebooks
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62❤24🔥19😁1
Традиционные методы файн‑тюнинга моделей под конкретный образ персонажа обычно либо:
InstantCharacter решает обе проблемы сразу:
Высокое качество
- Построен на базе DiT-моделей, которые по качеству превосходят классические UNet‑архитектуры.
Китайцы сделали адаптер с каскадными энкодерами‑трансформерами, который модулирует признаки персонажа и взаимодействует с латентным пространством DiT.
Фреймворк обучен и на огромном датасете - более 10 миллионов примеров, поделённых на парные и непарные (текст+изображение) примеры.
Трёхэтапное обучение:
Результаты:
В сравнении с предыдущими подходами InstantCharacter задает высокую планку качества в задачах character-driven image generation.
@ai_machinelearning_big_data
#Hunyuan #Tencent #InstantCharacter
#OpenSource #AI #CharacterCustomization
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59❤25🔥16
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры
⏩ Что доступно:
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
🔜 Проект
🔜 Код
🔜 Схемы
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍67❤17🔥10🤩3
🔋 Экономия памяти: по сравнению с 7B-версией модель потребляет на 50 % меньше VRAM при обработке длинного контекста (~25 000 токенов).
📺 Мультимодальные режим: поддержка 30-секундных аудио- и видео«из коробки» на 24 GB видеокартах.
🤖 Высокое качество: модель сохраняет свыше 90 % точности ответов и обеспечивает естественный, стабильный синтез речи на уровне 7B-модели.
#Qwen #omni #opensource
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51❤29🔥18
https://huggingface.co/learn/llm-course/chapter1/1
Создавайте инструменты с многоэтапным мышлением, используя LangChain и HF.
https://huggingface.co/learn/agents-course/unit0/introduction
Научите агентов принимать решения и учиться на основе окружающей среды.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
Изучите как работает OCR, сегментация и классификация изображений с моделями HuggingFace.
https://huggingface.co/learn/audio-course/chapter0/introduction
Применяйте трансформеры к аудио: распознавание речи, тегирование музыки и синтез речи.
https://huggingface.co/learn/audio-course/chapter0/introduction
Узнайте, как ИИ меняет разработку игр: от поведения NPC до генерации контента.
https://huggingface.co/learn/ml-games-course/unit0/introduction
Работайте с 3D-данными, такими как облака точек и сетки, на стыке графики и ML.
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction
Погрузитесь в технологию, лежащую в основе DALL·E и Stable Diffusion, и научитесь генерировать изображения.
https://huggingface.co/learn/diffusion-course/unit0/1
Коллекция практических ноутбуков от реальных разработчиков ИИ — учитесь, копируйте код и создавайте свои проекты. https://huggingface.co/learn/cookbook/index
@ai_machinelearning_big_data
#free #courses #opensource #huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍154🔥33❤30🏆6🤣2
This media is not supported in your browser
VIEW IN TELEGRAM
🗣️ RealtimeVoiceChat — живой голосовой чат с ИИ.
RealtimeVoiceChat — это open-source проект, который позволяет общаться с LLM в реальном времени голосом. Он объединяет распознавание речи, LLM и синтез речи в единую систему с минимальной задержкой — около 500 мс при локальной установке.
➡️ Как работает:
1. Запись речи в браузере
2. Передача аудио по WebSocket на сервер
3. Распознавание речи через
4. Ответ от LLM (Ollama, OpenAI и др.)
5. Озвучка ответа через
6. Обратная передача аудио в браузер
7. Поддержка прерываний и динамики через
✨ Особенности:
- Задержка ~500 мс
- Поддержка разных LLM и TTS движков
- Быстрый запуск через Docker Compose
- Чистый веб-интерфейс на Vanilla JS + Web Audio API
✔️ Стек:
- Backend: Python + FastAPI
- Frontend: JS + WebSockets
- ML: transformers, torchaudio, Ollama, Whisper, TTS
- Контейнеризация: Docker
✔️ Требуется CUDA-совместимая видеокарта (для Whisper/TTS) и Docker.
🔥 Отличный проект для тех, кто хочет интегрировать голосовой интерфейс с LLM — например, для ассистентов, чат-ботов, презентаций или UX-экспериментов.
🔜 Репозиторий: https://github.com/KoljaB/RealtimeVoiceChat
🔜 Демо: https://www.youtube.com/watch?v=-1AD4gakCKw
@ai_machinelearning_big_data
#tts #llm #opensource
RealtimeVoiceChat — это open-source проект, который позволяет общаться с LLM в реальном времени голосом. Он объединяет распознавание речи, LLM и синтез речи в единую систему с минимальной задержкой — около 500 мс при локальной установке.
1. Запись речи в браузере
2. Передача аудио по WebSocket на сервер
3. Распознавание речи через
RealtimeSTT
(на базе Whisper)4. Ответ от LLM (Ollama, OpenAI и др.)
5. Озвучка ответа через
RealtimeTTS
(Coqui XTTSv2, Kokoro и др.)6. Обратная передача аудио в браузер
7. Поддержка прерываний и динамики через
turndetect.py
✨ Особенности:
- Задержка ~500 мс
- Поддержка разных LLM и TTS движков
- Быстрый запуск через Docker Compose
- Чистый веб-интерфейс на Vanilla JS + Web Audio API
- Backend: Python + FastAPI
- Frontend: JS + WebSockets
- ML: transformers, torchaudio, Ollama, Whisper, TTS
- Контейнеризация: Docker
@ai_machinelearning_big_data
#tts #llm #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥93👍41❤24🥰2👏1👌1
Платформа Ollama представила новый движок с полной поддержкой мультимодальных ИИ-моделей, которые могут работать как с текстом, так и с изображениями.
Уже доступны:
• LLaMA 4,
• Gemma 3,
• Qwen 2.5 VL,
• Mistral Small 3.1 и другие модели.
• Каждая модель теперь полностью автономна — это упрощает обновления и интеграцию
• Улучшена точность визуального анализа благодаря передаче метаданных и поддержке больших изображений
• Оптимизирована работа с памятью: кэшируются изображения, улучшен KV-кэш, модели работают быстрее и стабильнее
Ранее Ollama уже поддерживала работу с изображениями через интеграцию с llama.cpp. Однако с выпуском версии 0.7 платформа представила новый движок, разработанный на базе библиотеки GGML, который обеспечивает полноценную и стабильную поддержку мультимодальных моделей.
Это означает, что теперь такие модели являются "полноправными гражданами" в экосистеме Ollama, что улучшает надежность, точность и расширяет возможности для будущих модальностей, таких как речь, генерация изображений и видео, а также поддержка более длинных контекстов и улучшенных инструментов для моделей.
@ai_machinelearning_big_data
#olama #opensource #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥102👍46❤24🥱4🎄1
Команда Visual Studio Code объявила о планах трансформировать VS Code в редактор с открытым исходным кодом для работы с ИИ.
В ближайшие недели команда Visual Studio Code планирует открыть исходный код расширения GitHub Copilot Chat и перенести ИИ-функции из расширения в основное ядро VS Code.
Конкуренция - двигатели прогресса!
🔗 Подробности: aka.ms/open-source-ai-editor
#VSCode #OpenSource #ИИ #Разработка #Сообщество
Please open Telegram to view this post
VIEW IN TELEGRAM
👍150🔥62❤32🫡5💔4🎄1
Яндекс подвел итоги грантовой программы для разработчиков в опенсорсе
В этом году компания выделила 7,2 млн рублей — всего в программе выиграли 12 проектов в трех треках: «Обработка и хранение данных», «Разработка», «Машинное обучение». Эти средства разработчики смогут направить на использование сервисов Yandex Cloud — от ML-решений до инфраструктурных инструментов.
Из интересных проектов в ML-направлении:
• Faster COCO Eval — реализация операций COCO-eval на языке C++, которая позволяет сократить время вычисления метрик AP в coco при работе с большим количеством объектов на изображении.
• VLMHyperBench — специализированный фреймворк для работы с русскоязычными документами на базе Vision Language Model (VLM).
Сейчас решения активно дорабатываются. Гранты позволят масштабировать и реализовать идеи по их улучшению. Радует, что компании поддерживают опенсорс-комьюнити.
🔗Статья
#VLMHyperBench #AI #VLM #OpenSource
В этом году компания выделила 7,2 млн рублей — всего в программе выиграли 12 проектов в трех треках: «Обработка и хранение данных», «Разработка», «Машинное обучение». Эти средства разработчики смогут направить на использование сервисов Yandex Cloud — от ML-решений до инфраструктурных инструментов.
Из интересных проектов в ML-направлении:
• Faster COCO Eval — реализация операций COCO-eval на языке C++, которая позволяет сократить время вычисления метрик AP в coco при работе с большим количеством объектов на изображении.
• VLMHyperBench — специализированный фреймворк для работы с русскоязычными документами на базе Vision Language Model (VLM).
Сейчас решения активно дорабатываются. Гранты позволят масштабировать и реализовать идеи по их улучшению. Радует, что компании поддерживают опенсорс-комьюнити.
🔗Статья
#VLMHyperBench #AI #VLM #OpenSource
👍59🔥13❤8😁6🥱2🎄1
🚀 Mistral AI представила Devstral — новый open-source LLM для автономных кодинг-агентов
Mistral AI представил Devstral — свою модель, специально разработанную для решения реальных задач в области кодинга.
Созданная в сотрудничестве с All Hands AI, Devstral демонстрирует выдающиеся результаты на бенчмарке SWE-Bench Verified, превзойдя все существующие open-source модели с результатом 46,8%.
💡Лицензирвоание: Apache 2.0 — свободное коммерческое использование.
https://huggingface.co/mistralai/Devstral-Small-2505
@ai_machinelearning_big_data
#Devstral #MistralAI #Кодинг #ИИ #OpenSource
Mistral AI представил Devstral — свою модель, специально разработанную для решения реальных задач в области кодинга.
Созданная в сотрудничестве с All Hands AI, Devstral демонстрирует выдающиеся результаты на бенчмарке SWE-Bench Verified, превзойдя все существующие open-source модели с результатом 46,8%.
💡Лицензирвоание: Apache 2.0 — свободное коммерческое использование.
https://huggingface.co/mistralai/Devstral-Small-2505
@ai_machinelearning_big_data
#Devstral #MistralAI #Кодинг #ИИ #OpenSource
👍82🔥35❤20🎄3❤🔥1
Главное:
• Глубокое рассуждение — на уровне моделей Google
• Улучшена генерация текста — более естественно, структурировано и аккуратно
• Уникальный стиль reasoning — не просто быстро, а вдумчиво и последовательно
• Может работать над одной задачей 30–60 минут, удерживая контекст
Новая модель показывает результат почти на уровне o3 (High) на бенчмарк LiveCodeBench.
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
@ai_machinelearning_big_data
#DeepSeek #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101🔥35❤24😁9🥱5❤🔥4🙈1🎄1
Первая полностью open-source, готовая к продакшену PBR 3D генеративная модель!
PBR (Physically Based Rendering) - это технология, при которой внешний вид 3D-объектов рассчитывается с учётом реальных физических законов взаимодействия света и поверхности.
✅ Модель выдает кинематографичное качество: синтез PBR-материалов — кожа, бронза и другие поверхности выглядят фотореалистично с красивыми эффектами освещения.
✅ Open source: доступны веса модели, код для обучения и инференса, пайплайны — всё можно доработать под себя.
✅ Запускается даже на потребительских GPU (Модель тестировалась на GPU A100 с Python 3.10 и PyTorch 2.5.1+cu124.) — с моделью создавать 3D-контент могут не только студии, но и любые разработчики и малые команды.
▪ Модель: https://huggingface.co/tencent/Hunyuan3D-2.1
▪ Github: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
▪ Hunyuan 3D Creation Engine: https://3d.hunyuan.tencent.com
@ai_machinelearning_big_data
#Hunyuan3D #OpenSource #3DCreation #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤65🔥40👍25🥰7
🚀 Baidu открыла исходный код серии моделей ERNIE 4.5 !
🧠 Эти модели достигли SOTA-результатов на текстовых и мультимодальных бенчмарках:
— следование инструкциям,
— запоминание фактов,
— визуальное понимание,
— мультимодальные рассуждения.
🔧 Обучены на PaddlePaddle с эффективностью до 47% MFU при претрейне крупнейшей модели.
📦 В составе релиза:
- 10 моделей ERNIE 4.5,
- MoE‑архитектуры с 3B и 47B активных параметров,
- самая крупная модель содержит 424B параметров (MoE),
- также доступна компактная dense‑версия на 0.3B.
Всего Baidu выложила сразу 23 модели на Hugging Face размерами — от 0.3B до 424B параметров! 💥
🟢 Попробовать: https://ernie.baidu.com
🟢 Hugging Face: https://huggingface.co/baidu
🟢 GitHub: https://github.com/PaddlePaddle/ERNIE
🟢 AI Studio: https://aistudio.baidu.com/overview
@ai_machinelearning_big_data
#ERNIE #opensource #Baidu
🧠 Эти модели достигли SOTA-результатов на текстовых и мультимодальных бенчмарках:
— следование инструкциям,
— запоминание фактов,
— визуальное понимание,
— мультимодальные рассуждения.
🔧 Обучены на PaddlePaddle с эффективностью до 47% MFU при претрейне крупнейшей модели.
📦 В составе релиза:
- 10 моделей ERNIE 4.5,
- MoE‑архитектуры с 3B и 47B активных параметров,
- самая крупная модель содержит 424B параметров (MoE),
- также доступна компактная dense‑версия на 0.3B.
Всего Baidu выложила сразу 23 модели на Hugging Face размерами — от 0.3B до 424B параметров! 💥
@ai_machinelearning_big_data
#ERNIE #opensource #Baidu
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥20❤10💋1
🔥 Очередной релиз от Alibaba — новая мультимодальная модель Ovis‑U1‑3B.
🧠 Поддерживает:
• Понимание изображений (Image-to-Text )
• Генерация картинок по описанию (Text-to-Image)
• Интерактивное редактирование изображений (Inpainting по тексту)
⚙️ Размер: всего 3B параметров
📊 Производительность:
• 69.6 баллов в OpenCompass (выше, чем у Qwen 2.5 и Ovis-2)
• GenEval Accuracy: 0.89 — превосходит GPT-4o
• ImgEdit-Bench: почти на уровне GPT-4o (4.0 vs 4.2)
💡 Под капотом:
• Архитектура Ovis (Open Vision System)
• Поддержка генерации 1024×1024 с CFG
Хорошая маленькая, но мощная моделька, выйдает достойные генерации на демке.
🟠 Попробовать: https://huggingface.co/spaces/AIDC-AI/Ovis-U1-3B
🟠 Модель: https://huggingface.co/AIDC-AI/Ovis-U1-3B
@ai_machinelearning_big_data
#Alibaba #opensource
🧠 Поддерживает:
• Понимание изображений (Image-to-Text )
• Генерация картинок по описанию (Text-to-Image)
• Интерактивное редактирование изображений (Inpainting по тексту)
⚙️ Размер: всего 3B параметров
📊 Производительность:
• 69.6 баллов в OpenCompass (выше, чем у Qwen 2.5 и Ovis-2)
• GenEval Accuracy: 0.89 — превосходит GPT-4o
• ImgEdit-Bench: почти на уровне GPT-4o (4.0 vs 4.2)
💡 Под капотом:
• Архитектура Ovis (Open Vision System)
• Поддержка генерации 1024×1024 с CFG
Хорошая маленькая, но мощная моделька, выйдает достойные генерации на демке.
@ai_machinelearning_big_data
#Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥52❤15👍13🥰4
This media is not supported in your browser
VIEW IN TELEGRAM
📓🦙 NotebookLlama —Практически полный функционал NotebookLM — в опенсорсе.
Особенности:
✔️ Создаёт базу знаний из документов — с точным разбором через LlamaCloud
✔️ Автоматически пишет резюме и строит mind map-графы
✔️ Позволяет генерировать подкасты (работает на базе ElevenLabs)
✔️ Позволяет вести чат с агентом по документам
✔️ Метрики и аналитика через opentelemetry
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Особенности:
🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.
Установка:
git clone https://github.com/run-llama/notebookllama
▪GitHub: https://github.com/run-llama/notebookllama
▪Попробовать в LlamaCloud: https://cloud.llamaindex.ai
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #NotebookLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥99❤36👍17🥰1
Он выступает прослойкой между вашим агентом (например, LangChain, LlamaIndex, VertexAI) и базой данных, упрощая работу с базой, подключение, управление, безопасность и мониторинг.,
Подходит для разработки AI-агентов, которые могут создавать и управлять в реальными БД.
Особенности:
Если делаете агентов, которые работают с
SQL/PostgreSQL/MySQL
— точно стоит попробовать.▪ GitHub: https://github.com/googleapis/genai-toolbox
@ai_machinelearning_big_data
#AI #ML #aiagent #opensource #MCP #databases #genai
Please open Telegram to view this post
VIEW IN TELEGRAM
❤55👍23🔥16⚡3🥰1🍓1
Reachy Mini — это выразительный и полностью open-source робот, созданный для взаимодействия с человеком, коммуникации и экспериментов с ИИ.
- Все ПО открыто и написано на Python, а скоро будет достнуо — и на JavaScript и Scratch
- Базовая версия стоит $299, еще доступна wireless-версия за $449
- Открытая архитектура и SDK — идеален для экспериментов с LLM, аудио- и визуальными агентами
С ним можно разрабатывать, тестировать, запускать и делиться реальными ИИ-приложениями — на базе современных LLM-моделей.
Технические характеристики
- Высота: 28 см, в режиме сна — 23 см
- Ширина: 16 см, вес: 1.5 кг
- Поставляется в виде конструктора:
- Lite-версия — базовый функционал
- Полноценная версия — автономная версия с Raspberry 5 внутри, встроенным питанием, Wi‑Fi, микрофонами и камерой
🎤 Датчики и интерфейсы
- Микрофоны: Lite — 2, Wireless — 4 встроенных микрофонов
hyper.ai
- Камера: широкоугольная фронтальная камера (в wireless-версии)
- Акселерометр: встроен в Wireless-версию
🔗 Подробнее: https://hf.co/blog/reachy-mini
@ai_machinelearning_big_data
#huggingface #Reachy #opensource #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤73🔥52👍33🤔8👏4🙈3😁2
Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.
- параллельный запуск агентов
- трекинг задач
- переключение между моделями на лету
- встроенный review и контроль над результатами
- backend написан на Rust, frontend на React, всё разворачивается локально
Полностью open-source
@ai_machinelearning_big_data
#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
❤96👍59🔥38🥰4😁3👏1
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤95👍38🔥23🤔7