227K subscribers
3.79K photos
631 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ Компания Марка Цукерберга отказалась подписывать Кодекс по ИИ от Еврокомиссии.

Техгигант стал первым крупным разработчиком, публично отвергшим Кодекс по регулированию моделей ИИ общего назначения, предложенный Еврокомиссией. Глава по глобальным вопросам компании назвал инициативу «чрезмерной» и заявил, что она будет «душить разработку и внедрение передовых моделей в Европе».

Отказ от подписания создает новую почву для конфронтации между американским IT-бизнесом и Брюсселем. Несмотря на это, компания все равно будет обязана соблюдать нормы AI Act, которые вступают в силу 2 августа, иначе ей грозят крупные штрафы.
bloomberg.com

✔️ ARC запускает предварительную версию бенчмарка ARC-AGI-3.

Исследовательская группа выпустила предварительную версию своего бенчмарка нового поколения ARC-AGI-3. Он предназначен для оценки способности ИИ-систем к интерактивному мышлению в динамической среде. В отличие от статичных тестов, новый набор задач требует от ИИ-агентов планировать, адаптироваться и реагировать в реальном времени.

Превью включает 3 из 6 запланированных игровых сред и публичный API для тестирования. Первые результаты оказались неутешительными для актуальных моделей: топовые системы, включая GPT-4, показали результат 0%, в то время как люди справились на 100%.

Чтобы стимулировать прогресс в этой области, ARC объявила конкурс с призовым фондом в 10 000 долларов для команд, которые смогут улучшить производительность своих агентов. Полный запуск бенчмарка запланирован на начало 2026 года.
arcprize.org

✔️ В поисковике DuckDuckGo появился фильтр для скрытия ИИ-изображений.

DuckDuckGo добавил в поиск по картинкам новую функцию, она отфильтровывает сгенерированные искусственным интеллектом изображения. Опция доступна в виде выпадающего меню на вкладке «Изображения», а также может быть активирована в основных настройках поиска.

В компании заявили, что это ответ на жалобы пользователей, которые считают, что синтетические картинки «засоряют» выдачу и мешают находить настоящие фотографии. Механизм фильтрации основан на открытых, вручную курируемых черных списках. Хотя инструмент не гарантирует 100% отсева, в DuckDuckGo ожидают, что он значительно сократит количество ИИ-контента в результатах поиска.
DuckDuckGo в сети X

✔️ Google открыла доступ к Veo 3 через API.

Google сделала Veo 3 доступной для разработчиков через Gemini API. Теперь они могут встраивать возможности по созданию видео в собственные приложения. Пока API поддерживает только генерацию из текста, но скоро появится и функция image-to-video, уже работающая в приложении Gemini. Для начала работы Google предлагает шаблоны SDK и требует активный биллинг в Google Cloud.

Стоимость генерации через API - 0.75 доллара за секунду видео со звуком в разрешении 720p с частотой 24 кадра в секунду. Таким образом, ролик длительностью 8 секунд обойдется в 6 долларов, а пятиминутный - в 225 долларов. Учитывая необходимость нескольких попыток для получения нужного результата, итоговая стоимость может оказаться весьма высокой. В Google, вероятно, рассчитывают, что для некоторых сценариев это все равно будет выгоднее традиционного видеопроизводства.
developers.googleblog.com

✔️ Netflix впервые использовал генеративный ИИ для создания VFX в своем сериале.

Компания рассказала, что применила ИИ для производства спецэффектов в аргентинском научно-фантастическом сериале «El Eternauta». С помощью генеративного ИИ была создана сцена обрушения здания в Буэнос-Айресе, которую создала внутренняя студия Netflix Eyeline Studios. Кадры были напрямую включены в финальный монтаж.

По словам со-исполнительного гендиректора Теда Сарандоса, рабочий процесс с использованием ИИ позволил завершить сцену в 10 раз быстрее по сравнению с традиционными VFX-инструментами. Он подчеркнул, что компания рассматривает ИИ не как способ удешевления, а как «невероятную возможность помогать авторам делать фильмы лучше». Netflix тестирует технологию и в других областях: голосовой поиск по контенту и в рекламе.
reuters.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
60👍37🔥9🤔4
✔️T-Pro 2.0 — LLM с гибридным режимом рассуждений

Т-Банк релизнул модель с гибридным ризонингом в опенсорс.
T-Pro 2.0 дообучили на основе Qwen3 32B, улучшив качество и скорость генерации на русском языке.

Вместе с моделью впервые выложили инструктивный датасет. Как дообучали модель сегодня рассказали на Turbo ML конфе и выложили на хабр.

✔️Дообучение модели T-Pro 2.0 проходило в несколько этапов.

На основе токенизатора Qwen3 и с помощью расширения его кириллической части более, чем в 5 раз, разработчики получили улучшенный токенизатор для мультилингвальных моделей. По итогу токенизатор оказался на 30% более эффективен для русского языка. Затем за счет плотного токенизатора на двух доменах (чатовые запросы ru-arena-hard и олимпиадные математические задачи из T-Math) ускорили инференс.

Следующим шагом было дообучение на большом русскоязычном инструктивном корпусе. Далее модель дообучали на более чистом SFT-сете, сформированном из разнообразных промптов, собранных вручную, из открытых источников и переводов англоязычных наборов данных. Для формирования итогового датасета ответы на инструкции генерировались с помощью более мощных моделей, таких как DeepSeek-V3 0324 и Qwen3-235B-A22B. Это позволило обеспечить высокий уровень точности и релевантности.

На стадии Preference tuning для обучения DPO сформировали набор данных с фильтрацией по длине и типу для general-инструкций и сохранением баланса доменов для reasoning-инструкций.
На финальном этапе Speculative decoding в качестве драфт- модели выбрали EAGLE 1 с генерацией драфта во время инференса с помощью tree attention согласно EAGLE 2.

✔️Бенчмарки моделей

Для того, чтобы оценить способности моделей к ведению диалога, следованию инструкциям и решению задач разработчики использовали LLM-as-a-judge-арены: Arena Hard Ru, Arena Hard 2 и арену WildChat Hard Ru. В последней в качестве бейзлайна использовались ответы модели o3-mini, а “судьей” для всех арен выступал DeepSeek V3 0324. Для оценки знаний о мире и общим логическим способностям моделей на русском языке использовались бенчмарки MERA, MaMuRAMu, ruMMLU, ruMMLU-Pro.

Бенчмарки AIME, MATH-500, GPQA Diamond, Vikhr Math, Vikhr Physics, LiveCodeBench v4_v5 позволили оценить способности reasoning-модели к рассуждениям и решению сложных задач. Англоязычные бенчмарки были целиком локализованы на русский язык ИИ-тренерами: ruAIME, ruMATH-500, ru GPQA Diamond, ruLCB. Компания также использовала свой бенчмарк Т-Math, чтобы расширить оценку математических способностей на русском языке.

✔️Задачи, которые закрывает T-Pro 2.0

Дообучение даже продвинутых LLM позволяет управлять стоимостью инференса и скоростью генерации, дообучать важные домены (саппорта или распределение внутреннего промтинга), уменьшить количества артефактов и проблем с русским языком.

Модель T-Pro 2.0 доступна по лицензии Apache 2.0, ее можно бесплатно использовать как для решения задач в промптинге, так и для дообучения на свои задачи.

▪️Hugging face: T-Pro 2.0
Датасет T-wix

@ai_machinelearning_big_data

#news #ai #ml #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8735🔥26🤔7😁5🗿5💯2❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔋Робот, умеющий сам менять себе батарею

Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.


@ai_machinelearning_big_data

#ai #ml #robots
👍14444🔥19😢8😁4🤬4🦄2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🐼 Pandas тормозит на больших данных?

NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.

Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя cudf.pandas.

Для примеры были взяты:
📉 Скользящие средние (50D и 200D)
📅 Недельная статистика закрытия рынков
🧊 В общей сложности ~18M строк

Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз

Код скрипта не менялся вообще — тот же pandas, но на GPU.

Это один из примеров, где ускорение достигается без переписывания логики кода.

🟡 Потестить самому можно в Colab
🟡 Другие примеры с кодом — здесь

@ai_machinelearning_big_data


#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1116👍38🔥18🤔3😁2🤣2
MWS Cloud включается в игру: запускает Data Lakehouse

Пока все обсуждают, как внедрять LLM, в MWS Cloud сделали ход: вышли с собственной платформой для хранения и обработки больших данных — MWS Data Lakehouse. Это уже не просто база или витрина, это полноценный фундамент для обучения, инференса и аналитики.

Ключевая особенность — универсальность.
Платформа работает с любыми типами данных: структурированными, неструктурированными, векторными. Поддержка Apache Parquet, Iceberg, Greenplum, Postgres, запуск в Kubernetes, объектное S3-хранилище. Всё, что нужно, чтобы компания могла: обучать ML/LLM модели, строить BI-отчёты, прогнозировать, сегментировать, оптимизировать. И всё это без копирования данных между системами.

Главное — цифры.
Платформа ускоряет обработку данных в 23 раза. Хранилище используется на 40% экономичнее. В 2,5 раза выше эффективность ИТ-персонала. Витрины данных считаются в 2 раза быстрее.

То есть платформа не просто "поддерживает ИИ" — она позволяет его внедрять в реальных бизнес-процессах, а не в пилотах и презентациях.

Безопасность и масштабируемость.
Встроенные инструменты шифрования, маскирования, аудита, контроль доступа. Централизованное управление, масштабирование без простоев. Можно запускать кластеры под разные команды и сценарии параллельно — без дублирования данных.

Контекст: рынок меняется.
Компании всё активнее вкладываются в инструменты, которые позволяют работать с ИИ на проде, а не просто тестировать гипотезы. Lakehouse — архитектура, к которой уже перешли десятки тысяч компаний на Западе. MWS Cloud предлагает такую же модель — внутри российской облачной экосистемы.

И да: MWS Data Lakehouse — часть экосистемы MWS Data, включающей 25+ сервисов для хранения, аналитики и AI.

Почему это важно.
ИИ уже давно не хобби айтишников. Это трансформация всей ИТ-архитектуры компаний. А без таких платформ запуск ИИ-проектов становится дорогим, медленным и уязвимым.

Именно поэтому сейчас выигрывают не те, у кого «есть данные», а те, у кого есть инфраструктура, чтобы эти данные реально использовать.

@ai_machinelearning_big_data


#data #ai #ml #infrastructure #mts
👍4618🔥16😁4🥱3
🌟 AI Flow: концепция коллаборативного ИИ.

China Telecom совместно с TeleAI спроектировали фреймворк AI Flow, который рассматривает ИИ и сети передачи данных как единую систему.

AI Flow - это не просто очередной метод оптимизации, а цельная парадигма. Она предлагает отойти от идеи монолитного ИИ к распределенному и коллаборативному, где интеллект может перетекать по сети туда, где он в данный момент нужнее всего и где для него есть ресурсы.

🟡Архитектура "Устройство-Edge-Облако".

Идея в том, чтобы разумно распределять нагрузку: простейшие операции выполняются на самом гаджете, более сложные и требующие низкой задержки — на ближайшем edge-сервере, а самое тяжелые задачи и ресурсоемкий инференс остаются в облаке.

AI Flow предлагает конкретные механизмы для такой концепции - спекулятивное декодирование, где легкая модель на устройстве быстро генерирует черновик ответа, а мощная модель на эдже его лишь верифицирует и корректирует.

🟡Основа архитектуры - "семейные модели" (familial models).

Это не просто набор моделей разного размера, а целое семейство с архитектурно согласованными скрытыми представлениями.

Маленькая, средняя и большая модели устроены настолько похоже, что они могут бесшовно передавать друг другу эстафету инференса.

Модель на смартфоне обрабатывает первые несколько слоев, а затем ее промежуточный результат подхватывает модель на сервере и продолжает вычисления ровно с того же места, без какого-либо дополнительного преобразования данных.

🟡Эмерджентный интеллект через сотрудничество моделей.

Пайплайн AI Flow делает возможным взаимодействие разных моделей, от LLM и VLM до диффузионных генераторов.

Через такую коллаборацию рождается эмерджентный интеллект – коллективная интуиция, превышающая возможности отдельных сетей, где несколько агентов генерируют черновые решения, затем сервер-оркестратор выбирает лучшие фрагменты, объединяет их и возвращает итоговый ответ для уточнения с учетом контекста каждого из них.

В этом и фишка: после такой синергии ответ становится богаче и более осмысленным, ведь сходятся разные точки зрения и узкопрофильные знания моделей-участников.

▶️В открытом доступе опубликована предварительная версия модели Ruyi-7B (AI-Flow-Ruyi-7B-Preview) из "семейных моделей".

Ее крупнейшая ветвь содержит 7 млрд. параметров и способна порождать early-exit подсети с эффективным числом параметров в 3, 4, 5 и 6 млрд:

🟢Branch 3B/4B: простые сценарии диалога с минимальными требованиями по ресурсам;

🟢Branch 5B/6B: повседневные универсальные задачи, баланс возможностей и отзывчивости;

🟢Branch 7B: решение сложных проблем, повышенные требования к ресурсам.


📌Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #AIFlow #TeleAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍28🔥10😨5🥰32🙉1
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!

Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.

Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.

📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI

⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.

📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов

💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.

🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8

Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.

@ai_machinelearning_big_data


#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
95👍38🔥23🤔7
Media is too big
VIEW IN TELEGRAM
✔️ ИИ-ассистент Replit удалил производственную базу данных.

Replit, позиционирующая себя как инструмент для вайбкодинга, оказалась в центре скандала. Джейсон Лемкин, основатель SaaStr, подробно описал свой опыт, который начался с восторга от скорости прототипирования и перерос в серьезные проблемы.

Несмотря на явные и многократные инструкции не вносить изменения без разрешения, ИИ-агент удалил его производственную базу данных. Ситуацию усугубила противоречивая реакция техподдержки, которая сначала заявила о невозможности восстановления данных, а затем все же смогла их вернуть.

Лемкин пришел к выводу, что Replit пока не готов для серьезной работы. Инструмент не только проигнорировал прямые запреты, но и не смог обеспечить "заморозку кода".
theregister.com

✔️ Стартап Composite AI выпустил локального браузерного ИИ-агента.

Агент, представленный Composite AI, автоматизирует рутинные действия в интернете: клики, ввод текста и навигацию по сайтам. Ключевое отличие от большинства аналогов в том, что он работает локально в браузере пользователя, а не в облаке. Это дает ему прямой доступ к входу в учетные записи пользователя без необходимости сложной настройки или передачи данных на сторонние серверы.

По заявлению разработчиков, инструмент работает на любом веб-сайте и выполняет действия в реальном времени. Пока агент доступен только на macOS. Бесплатная пробная версия действует 30 дней и включает 1000 запросов к топовым моделям. Платный тариф стоит 20 долларов в месяц за те же 1000 запросов, которые предоставляются ежемесячно.
composite.com

✔️ В платформу X интегрируют генерацию видео.

Соцсеть X скоро получит собственный инструмент для создания видеороликов из текстовых описаний. По словам Илона Маска, новая фича под названием «Imagine» будет основана на интеграции технологий стартапа Hotshot, который его компания, xAI, приобрела в марте, с чат-ботом Grok.

Х планирует дать пользователям возможность быстро создавать креативные вирусные видео. Это позволит ей конкурировать с Veo от Google. Еще до поглощения Hotshot был известен в сообществе ИИ-энтузиастов своими разработками в области text-to-video.
finance.yahoo.com

✔️ NVIDIA открыла платформу CUDA для процессоров с архитектурой RISC-V.

На саммите RISC-V в Китае NVIDIA анонсировала открытие платформы CUDA для поддержки процессоров с открытой архитектурой RISC-V. Впервые в истории проприетарная технология выходит за пределы экосистем x86 и Arm, что может значительно ускорить внедрение RISC-V в высокопроизводительных системах.

Согласно анонсу, CPU на базе RISC-V теперь смогут выступать в роли центрального управляющего компонента в ИИ-системах, использующих технологии NVIDIA. Компания уже продемонстрировала референсную архитектуру, где процессор RISC-V отвечает за операционную систему и логику, графические ускорители NVIDIA - за интенсивные вычисления, а DPU - за сетевые задачи.
RISC-V в сети X

✔️ В обучении ИИ меняется тенденция: вместо разметчиков данных теперь нанимают дорогих экспертов.

ИИ-компании Scale AI, Turing и Toloka отказываются от услуг низкооплачиваемых разметчиков данных в пользу узкопрофильных специалистов. Этот тренд обусловлен появлением моделей нового поколения, способных к ризонингу. Для их обучения простого аннотирования данных уже недостаточно.

Новая стратегия требует от экспертов не просто маркировать данные, а демонстрировать свой мыслительный процесс, например, в формате цепочки рассуждений. Инженеры и ученые решают комплексные задачи, а модель учится на их примерах.
ft.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6427🤣10🔥7🥰6
🌟 OpenReasoning-Nemotron: набор ризонинг-моделей от NVIDIA.

OpenReasoning-Nemotron - набор LLM на архитектуре Qwen 2.5 и дистиллированных из DeepSeek-R1-0528 ( 671 млрд. параметров):

🟠OpenReasoning-Nemotron-1.5B;
🟠OpenReasoning-Nemotron-7B;
🟠OpenReasoning-Nemotron-14B;
🟢OpenReasoning-Nemotron-32B;

Семейство было обучено на 5 млн. примеров рассуждений в математике, естественных науках и программировании.

Модели показали достойные результаты pass@1 на бенчах GPQA, MMLU-PRO, AIME, HMMT и LiveCodeBench - без использования RL.

Старшая модель, 32B, выбила 96,7% по HMMT с декодированием GenSelect.


📌Лицензирование: CC-BY-4.0 License.


🟡Статья
🟡Набор моделей


@ai_machinelearning_big_data

#AI #ML #LLM #Reasoning #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
84👍19🔥18🥰3👏2
🚨 Oracle официально согласилась поставить OpenAI 2 МИЛЛИОНА AI-чипов

Что это значит?

OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год 😳

💸 SoftBank? Больше не при делах:
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе

Oracle теперь главный поставщик чипов для OpenAI.

4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне города — только ради обучения ИИ.

🔜 Новость


@ai_machinelearning_big_data


#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
79🔥46🤔24👍14👀10🤬8🍓2👨‍💻2🥰1🤣1
Media is too big
VIEW IN TELEGRAM
✔️ Anthropic пойдет за инвестициями в страны Персидского залива.

CEO Anthropic Дарио Амодеи в служебной записке для сотрудников объявил о планах компании привлекать инвестиции из ОАЭ и Катара. Это серьезный разворот в их политике, ранее Anthropic отказывался от денег из Саудовской Аравии по соображениям нацбезопасности.

Амодеи признал, что это решение обогатит "диктаторов", но назвал доступ к огромному капиталу региона (по его оценкам, более $100 млрд) критически важным для сохранения лидерства в ИИ-гонке. Он сослался на то, что конкуренты уже активно сотрудничают с Ближним Востоком, ставя Anthropic в невыгодное положение.

Глава компании подчеркнул, что речь идет о чисто финансовых вложениях без передачи контроля, однако признал риск "мягкой силы" со стороны инвесторов. Он также приготовил сотрудников к критике в СМИ, назвав обвинения в лицемерии неизбежными.
wired.com

✔️ Gemini взяла золото на Международной математической олимпиаде.

Усовершенствованная версия Gemini с технологией Deep Think успешно решила 5 из 6 сложнейших задач на IMO, набрав 35 баллов и показав результат, соответствующий золотой медали. Модель работала полностью в естественном языке, самостоятельно генерируя математические доказательства из текстового описания задач, уложившись в рамки стандартного 4.5-часового лимита олимпиады.

Для сравнения, в прошлом году системам AlphaGeometry и AlphaProof требовалась помощь экспертов для перевода задач на формальные языки и несколько дней вычислений. Такого результата удалось достичь благодаря режиму Deep Think, который позволяет модели одновременно исследовать несколько путей решения, а также дообучению на массиве математических задач и решений.
deepmind.google

✔️ Microsoft переманила более 20 ключевых ИИ-специалистов из Google DeepMind.

Microsoft активно нанимает ведущих инженеров и исследователей из Google DeepMind, усиливая свои позиции в гонке за таланты. Последним заметным переходом стал Амар Субраманья, бывший глава разработки чат-бота Gemini, который занял пост вице-президента по ИИ в Microsoft. За последние полгода к нему присоединились еще как минимум 23 бывших сотрудника DeepMind.

Ключевую роль в этой охоте за головами играет Мустафа Сулейман, сооснователь DeepMind, который теперь возглавляет потребительское ИИ-направление в Microsoft. Он активно привлекает своих бывших коллег для создания новых продуктов. В Google признают отток, но утверждают, что их текучесть кадров ниже средней по отрасли.
ft.com

✔️ В Gemini 2.5 появилась функция диалоговой сегментации изображений.

Новая возможность позволяет анализировать и выделять объекты на изображениях с помощью запросов на естественном языке. Эта функция выходит за рамки традиционных методов, способных распознавать только фиксированные категории, например, "собака" или "машина".

C диалоговой сегментацией модель может выделить "человека с зонтом", "всех, кто не сидит" или даже такие понятия, как "беспорядок" и "повреждения", у которых нет четких визуальных контуров. Функция также распознает текст на изображениях и поддерживает многоязычные запросы. Доступ к функции открыт через Gemini API, а попробовать ее можно в Google AI Studio или Google Colab.
developers.googleblog.com

✔️ Пользователи ChatGPT ежедневно отправляют 2.5 миллиарда запросов.

OpenAI раскрыла статистику использования своего флагманского продукта: каждый день пользователи по всему миру отправляют в ChatGPT 2.5 миллиарда запросов, из которых около 330 миллионов приходятся на США. Еще в декабре прошлого года Сэм Альтман говорил о миллиарде запросов в день, что означает более чем двукратное увеличение за 8 месяцев.

Для сравнения, Google, по разным оценкам, обрабатывает от 14 до 16.4 миллиардов поисковых запросов в день. Хотя ChatGPT пока уступает гиганту поиска по абсолютным цифрам, темпы его роста наглядно показывают, насколько быстро ИИ становится неотъемлемой частью повседневной цифровой жизни.
techcrunch.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
46👍25🔥13😁3👀2
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга

Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов

📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков

🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)

💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code

Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.

#qwen #ml #ai #llm #Alibaba

@data_analysis_ml
👍79🔥2115👨‍💻2
🌟 Mixture-of-Recursions: концепция селективного ризонинга.

Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.

Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.

Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.

Это дает два главных преимущества:

🟢Во-первых, модель тратит вычислительные ресурсы только на те токены, которые все еще активны на данной глубине рекурсии. Токены, которые вышли раньше, в дальнейших вычислениях не участвуют. Это уже само по себе сокращает объем вычислений.

🟢Во-вторых, что самое интересное для инженеров, MoR позволяет реализовать очень эффективное KV caching. Вместо того чтобы хранить в памяти огромный кеш для каждого виртуального слоя, модель кеширует KV-пары только для активных в данном цикле рекурсии токенов. Это кардинально снижает требования к памяти и ускоряет инференс, решая одну из главных головных болей при развертывании LLM.

При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.

▶️ Попробовать MoR можно на практике - код для трейна и оценки доступен в репозитории проекта на Github.


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8643🔥23🥰8👌4😁2👨‍💻1
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI анонсировала дату проведения DevDay.

OpenAI объявила, что ее следующая конференция для разработчиков, DevDay, состоится 6 октября 2025 года в Сан-Франциско. На мероприятии выступят Сэм Альтман и Грэг Брокман. DevDay традиционно становится площадкой для главных анонсов OpenAI, и в этом году разработчикам обещают ранний доступ к информации о будущих продуктах и технологиях.

Конференция планирует собрать более 1500 разработчиков. Регистрация на очное участие открыта в формате подачи заявок до 30 июля, а приглашения будут разосланы в середине августа. Стоимость участия составит 650 долларов. Для тех, кто не сможет присутствовать лично, будет организована прямая трансляция основной части мероприятия, а записи остальных сессий опубликуют позже.
openai.com

✔️ Proton представила Lumo: защищенный чат-бот с фокусом на приватность.

Швейцарская компания Proton, известная своим одноименным почтовым сервисом, выпустила автономного ИИ-ассистента Lumo. Чат-бот позиционируется как безопасная альтернатива продуктам от крупных технологических корпораций.

Lumo умеет обобщать документы, писать код, составлять черновики писем и отвечать на веб-запросы. Сервис работает исключительно на открытых языковых моделях, размещенных в собственных дата-центрах Proton в Европе. Вся переписка защищена сквозным шифрованием с "нулевым доступом", что не позволяет самой компании или третьим лицам читать и хранить сообщения.

Попробовать Lumo можно без регистрации через веб-клиент или мобильные приложения, но с ограничениями. Платная подписка Lumo Plus за $12.99 в месяц снимает лимиты на общение и позволяет загружать файлы большего размера.
proton.me

✔️ Google DeepMind Aeneas: открытая ИИ-система для восстановления латинских надписей.

Google DeepMind выпустила Aeneas, опенсорсный инструмент на базе ИИ, предназначенный для помощи историкам в работе с фрагментарными древними надписями. Система анализирует неполные транскрипции и изображения, после чего определяет вероятное место и дату происхождения текста, предлагает варианты недостающих слов и находит аналоги в корпусе известных надписей.

Модель, обученная на 200 000 каталогизированных текстов, является развитием более ранней системы Ithaca для греческого языка. В исследовании, опубликованном в Nature, Aeneas улучшил генерацию научных гипотез в 90% случаев, а его оценки происхождения и датировки совпали с консенсусом ученых.

Aeneas доступна бесплатно для ученых, преподавателей и сотрудников музеев.
theguardian.com

✔️ AWS закрывает свою ИИ-лабораторию в Шанхае.

Amazon Web Services объявила о закрытии своей исследовательской ИИ-лаборатории в Шанхае. В компании это решение назвали трудным, оно завершает семилетнюю историю работы центра, который занимался передовыми разработками в области машинного обучения. По словам одного из научных сотрудников, подразделение расформировывают из-за "стратегических корректировок на фоне напряженности между США и Китаем".

Лаборатория, открытая в 2018 году, была весьма продуктивной: на ее счету более 100 научных публикаций и создание популярной open-source библиотеки Deep Graph Library. В лучшие времена в ней работало более 1000 человек.
ft.com

✔️ Компания Марка Цукерберга разработала нейромоторный браслет, работающий без персональной калибровки.

Устройство, разработанное в Reality Labs представляет собой браслет, который считывает электрическую активность мышц предплечья (sEMG), напрямую декодируя двигательные намерения пользователя.

Главное достижение - разработка универсальной модели, обученной на данных тысяч людей. В отличие от аналогов, требующих длительной настройки под каждого человека, эта система работает из коробки, без предварительной калибровки под новых пользователей.

В тестах интерфейс продемонстрировал распознавание рукописного ввода со скоростью почти 21 слово в минуту, точное определение дискретных жестов (щипки, свайпы) и плавное управление курсором. При этом короткая персональная донастройка на данных конкретного пользователя может повысить точность еще на 16%.
nature.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍37🔥8👏42🥰2👌2💯1
🌟 Hierarchical Reasoning Model: иерархическая модель рассуждений, имитирующая работу мозга человека.

Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:

🟢Первый, высокоуровневый модуль (H-модуль), отвечает за медленное, абстрактное планирование, подобно тета-волнам в мозге.

🟢Второй, низкоуровневый модуль (L-модуль), занимается быстрыми и детализированными вычислениями, аналогично гамма-волнам.

Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.

🟡Взаимодействие модулей назвали "Иерархической конвергенцией".

Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:

🟠Сначала быстрый L-модуль выполняет серию итераций, находя локальное равновесие для текущего шага задачи. Его итоговое состояние передается медленному H-модулю.

🟠H-модуль, в свою очередь, осмысливает полученный результат, выполняет один шаг собственного, более абстрактного обновления и задает совершенно новый контекст для L-модуля.

Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.

Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .

На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.

На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.

▶️ Веса моделей для самостоятельного воспроизведения тестов:

🟢ARC-AGI-2;
🟢Sudoku 9x9 Extreme (1000 examples);
🟢Maze 30x30 Hard (1000 examples);


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7350🔥35🤔7👀5🥰3🐳2
🧠 Qwen3-MT — Alibaba продолжает жечь и выпускает еще одну модель, в этот раз для машинного перевода.

🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира

📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.

🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели

Возможности:
Обеспечивает качественный перевод в реальном времени
Контроль стиля и терминов
Масштабируемость для API и продакшена
Цена — от $0.5 за миллион токенов

🟡 Попробовать демку: https://huggingface.co/spaces/Qwen/Qwen3-MT-Demo
🟡 ModelScope: https://modelscope.cn/studios/Qwen/Qwen3-MT-demo
🟡 Документация API: https://alibabacloud.com/help/en/model-studio/translation-abilities
🟡 Блог с подробностями: https://qwenlm.github.io/blog/qwen-mt/

@ai_machinelearning_big_data


#Qwen #Alibaba #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12231🔥22🥰5🎃4
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI готовится выпустить GPT-5 в начале августа.

Ключевым нововведением станет интеграция возможностей «o-серии», ориентированных на сложные логические рассуждения, в основную линейку GPT. Ожидается, что модель выйдет в нескольких вариантах: основная, «mini» и «nano». Полноразмерная и мини-версии будут доступны через ChatGPT и API, а нано-версия - только по API.

Сэм Альтман подтвердил, что уже тестирует GPT-5, описав ее как "умнее нас почти во всех отношениях", хотя и признал, что она вряд ли достигнет порога AGI на старте.
Релизу будет предшествовать выпуск открытой модели, похожей на o3-mini, до конца июля.

Запуск GPT-5 может быть отложен из-за проблем с безопасностью или мощностями, но инженеры Microsoft уже готовят дополнительные серверные ресурсы.
theverge.com

✔️ Дональд Трамп представил план по превращению США в ИИ-державу.

Президент США обнародовал "План действий в области ИИ" и подписал указы, направленные на ускорение строительства дата-центров и сворачивание федерального надзора. Документ содержит более 90 рекомендаций, включая упрощение разрешений для проектов мощностью свыше 100 МВт и использование федеральных земель и налоговых льгот для поддержки новых ЦОД и полупроводниковых производств.

В области торговли план предписывает продвигать экспорт американских ИИ-систем в союзные страны, но сохранять запрет на поставки передовых чипов противникам (Китай). Кроме того, Белый дом требует от федеральных ведомств использовать только "идеологически нейтральные" ИИ-модели и предупреждает штаты о возможном удержании финансирования за обременительные правила.
wsj.com

✔️ Google Photos получил ИИ-инструменты для создания видео из фото и стилизации изображений.

Google добавила в сервис Google Photos два новых творческих ИИ-инструмента - Photo to Video и Remix. Функция Photo to Video, работает на базе Veo 2 и позволяет оживлять статичные фотографии, превращая их в шестисекундные видеоролики с небольшой динамикой. Пользователи могут выбрать один из двух пресетов: "Subtle movements" или "Мне повезет!".

Remix стилизует фотографии под аниме, комиксы, наброски или 3D-анимацию. Оба нововведения располагаются в новой вкладке "Create", которая объединит все творческие функции приложения в одном месте.

Новые функции начнут поэтапно развертываться для пользователей в США в ближайшие несколько недель.
blog.google

✔️ Бенчмарк Humanity’s Last Exam содержит почти 30% неверных ответов.

Исследование, проведенное FutureHouse, выявило серьезные проблемы с достоверностью Humanity’s Last Exam (HLE) - одного из сложнейших бенчмарков для оценки возможностей ИИ-моделей. Анализ показал, что около 29% ответов в разделах по химии и биологии напрямую противоречат рецензируемой научной литературе.

Причиной такого высокого уровня ошибок называют саму методологию создания HLE. Целью было составить вопросы, на которые современные модели не могут дать ответ, что привело к появлению запутанных формулировок. Процесс проверки также был слабым: рецензентам давалось не более 5 минут на вопрос, и они не были обязаны верифицировать точность обоснований.

Для проверки команда FutureHouse использовала собственного ИИ-агента, который сверял ответы с научными публикациями. По итогам исследования, FutureHouse выпустила HLE Bio/Chem Gold - выверенный набор данных из вопросов HLE.
futurehouse.org

✔️ Илон Маск анонсировал возрождение Vine в "ИИ-формате".

Илон Маск анонсировал в X, что компания планирует перезапустить популярный в прошлом сервис коротких видео Vine, но с интеграцией искусственного интеллекта. Он не раскрыл технических деталей и сроков запуска.

Сервис Vine, запущенный в 2013 году, был закрыт в 2017 на фоне конкуренции со стороны Snapchat и TikTok. После покупки Twitter (ныне X) Маск неоднократно проводил опросы среди пользователей, интересуясь, стоит ли возвращать платформу.
Илон Маск в сети X

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
46👍20🔥13👏4🤬3👨‍💻2
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ Google запустила Opal, визуальный конструктор для создания и публикации ИИ-приложений.

Google Labs запустила публичную бета-версию инструмента Opal, в котором можно создавать простые ИИ-приложения без написания кода. Flowrise, make.com и n8n напряглись

Пользователь описывает желаемую цель тестом, после чего система автоматически генерирует визуальную блок-схему рабочего процесса, объединяя в цепочку промпты, ИИ-модели и внешние инструменты.

Схему можно гибко редактировать в drag-and-drop интерфейсе или с помощью дальнейших текстовых команд.

Готовые проекты публикуются как самостоятельные веб-приложения, привязанные к аккаунту Google, и ими можно сразу поделиться по ссылке.

В основе Opal лежат модели Gemini. Инструмент доступен пока только для пользователей в США.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
48👍23🔥14👨‍💻3😁2
🌟 NVIDIA научила роботов-манипуляторов учиться на собственных ошибках при захвате объектов.

Научить робота уверенно брать предметы - это, кажется, вечная тема в робототехнике. Несмотря на десятилетия исследований, надежные и универсальные системы захвата до сих пор остаются скорее теорией, чем реальностью.

Стоит копнуть глубже стандартных демо, и выясняется, что на сложных бенчмарках, FetchBench например, точность лучших систем едва дотягивает до 20%. Это фундаментальный барьер, мешающий внедрять роботов в реальные, неструктурированные среды.

🟡И вот, похоже, NVIDIA предложила решение этой проблемы.

GraspGen - фреймворк для генерации 6-DOF захватов, который не только показывает SOTA результаты, но и вводит новый, крайне интересный подход к обучению.

В его основе лежит связка из генератора на базе Diffusion Transformer и дискриминатора, знакомая всем по GAN-ам архитектура, но с важным отличием.

Генератор, получив на вход облако точек объекта, предлагает множество вариантов захвата, а дискриминатор оценивает их качество и отсеивает неудачные.

И вот тут-то и кроется основная идея, которую в NVIDIA назвали «On-Generator Training». Вместо того чтобы обучать дискриминатор на заранее собранном офлайн-датасете из "хороших" и "плохих" захватов, его учат непосредственно на тех ошибках, которые генерирует его подопечный - диффузионная модель.

Иными словами, дискриминатор становится экспертом не в захватах вообще, а в типичных промахах конкретного генератора. Он учится распознавать и отбраковывать именно те ложноположительные варианты, которые сам генератор считает удачными, но которые на самом деле приведут к провалу. Такой подход создает мощную и целенаправленную обратную связь.

🟡Подкреплено все это работой с данными.

Разработчики выпустили симулированный датасет, содержащий более 53 млн. примеров захватов для 3 разных типов манипуляторов, включая параллельные захваты и вакуумные присоски.

🟡На практике, в тестах, цифры говорят сами за себя.

В симуляции на сете ACRONYM GraspGen показывает AUC (площадь под кривой точность-покрытие) 0.94, это больше ближайших конкурентов на 48%.

На комплексном бенче FetchBench он обошел предыдущих лидеров M2T2 и Contact-GraspNet на 7.8% и 16.9% соответственно.

Но самое главное - это тесты на реальном железе. В экспериментах с роботом UR10 в зашумленной среде GraspGen достиг общей успешности в 81.3%, в то время как M2T2 и AnyGrasp показали лишь 52.6% и 63.7%.

🟡NVIDIA выложила в открытый доступ весь инструментарий.

Код, веса моделей и датасет уже доступны на GitHub и Hugging Face.

Авторы позаботились об энтузиастах: есть подробные инструкции по установке через Docker или pip, готовые демо-скрипты, позволяющие визуализировать захваты для своих облаков точек или 3D-моделей буквально в несколько команд.

Более того, GraspGen изначально спроектирован как модульная и расширяемая система. Разработчики предоставляют подробный туториал, который объясняет, как генерировать данные и обучать модели для совершенно новых объектов и, что важнее, новых типов манипуляторов, реализуя принцип BYOD.

🟡В планах на будущее

Интеграция с симулятором Isaac Lab для еще более продвинутой генерации данных и возможность дообучения на реальных данных.


📌Лицензирование кода: NVIDIA Research Licensing.

📌Лицензирование датасета : CC-BY-4.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #GraspGen #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4727👍21😁3🎉3👨‍💻1
Media is too big
VIEW IN TELEGRAM
✔️ В Шанхае стартует масштабная конференция по ИИ.

В эти выходные в Шанхае откроется Всемирная конференция по искусственному интеллекту, которая соберет как китайских технологических гигантов, Huawei и Alibaba, так и западные компании: Tesla, Google и Amazon.

Более 800 компаний представят свыше 3000 высокотехнологичных продуктов. Ожидается показ 40 больших языковых моделей, 50 ИИ-устройств и 60 интеллектуальных роботов.
reuters.com

✔️ Samsung ведет переговоры с OpenAI и Perplexity о внедрении их ИИ-сервисов в смартфоны Galaxy.

Южнокорейский техногигант хочет предложить пользователям больше опций выбора в ИИ-сервисах на своих устройствах, помимо уже интегрированной Google Gemini.

По словам Чхве Вон-Джуна, операционного директора мобильного подразделения, начиная с линейки Galaxy S26, компания планирует предоставить клиентам выбор из нескольких ИИ-сервисов.
bloomberg.com


✔️ Copilot получит персонализацию.

Мустафа Сулейман, CEO Microsoft AI, поделился своим видением будущего ассистента Copilot. По его мнению, он станет настолько персонализированным, что обретет постоянную идентичность, будет стареть и даже жить в своей комнате. Первым шагом к этой концепции стала новая функция Copilot Appearance.

Это эксперимент по созданию виртуального персонажа, который в реальном времени реагирует на диалог с помощью мимики и голоса и обладает памятью о предыдущих разговорах. Аватар может улыбаться, кивать и даже выражать удивление.
Функция уже доступна в режиме раннего доступа в Copilot Labs для ограниченного числа пользователей в США, Великобритании и Канаде.
theverge.com

✔️ В MIT научили роботов изучать собственную физику по видео.

MIT CSAIL представил Neural Jacobian Fields (NJF) - систему, которая кардинально меняет подход к управлению роботами. Вместо создания сложных математических моделей для жестких и дорогих конструкций, NJF позволяет роботу самостоятельно изучить свое тело и его реакции на команды, используя только зрение.

В процессе обучения робот совершает случайные движения, а система, в это время, наблюдает за ним с нескольких камер, выстраивая внутреннюю модель его физики м связывая управляющие сигналы с фактическим движением. В основе лежит развитие технологии NeRF.Ценность разработки в том, что после обучения, для управления в реальном времени роботу достаточно одной обычной камеры.

Технология уже успешно протестирована на различных устройствах, от мягких пневматических манипуляторов до стандартных 3D-печатных конструкций. Хотя система пока не обладает тактильной обратной связью, она открывает путь к созданию более дешевых и гибких роботов, способных адаптироваться к своей собственной, даже нестандартной, физической форме.
news.mit.edu

✔️ Leena AI представила «ИИ-коллег» с голосовым интерфейсом для совместной работы.

Leena AI, разработчик корпоративных ассистентов, анонсировала запуск "ИИ-коллег" - агентов нового поколения, которые могут общаться с сотрудниками голосом.

По мнению CEO компании, голосовое общение станет следующим этапом в развитии рабочих инструментов. Оно позволяет сотрудникам решать задачи на ходу, например, за рулем или в очереди. Так, пользователь может голосом попросить ассистента завести новую сделку в Salesforce и одновременно подготовить запрос в технический отдел по итогам встречи. Агент самостоятельно заполнит формы и составит черновик письма, запросив подтверждение перед отправкой.

У агентов есть личностные черты и даже есть любимая спортивная команда. Утром "ИИ-коллега" может "проснуться", просмотреть заметки и продолжить работу над задачами, как обычный сотрудник. В Leena AI прогнозируют, что технология может повысить продуктивность команд до 50%.
siliconangle.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🥰1512🔥6😨2🎉1👨‍💻1