QwQ (Qwen with Questions) – экспериментальная исследовательская модель, разработанная Qwen Team с фокусом на развитие способности рассуждения.
QwQ отличается любознательностью, подходя к каждой проблеме – будь то математика, программирование или знания о мире – с подлинным удивлением и сомнением. Прежде чем остановиться на каком-либо ответе, модель подвергает сомнению свои собственные предположения, исследуя разные пути рассуждений в поисках более глубокой истины.
QwQ-32B-Preview, предварительная версия модели, которая демонстрирует аналитические способности в математике и программировании, показывая топовые результаты в тестах:
Архитектура QwQ основана на
transformers
с использованием RoPE, SwiGLU, RMSNorm и Attention QKV bias. Модель имеет 32.5 млрд. параметров, 64 слоя и 40 attention heads для Q и 8 для KV. Контекст модели - 32 768 токенов.⚠️ Как у любого эксперимента, у QwQ есть ограничения:
⚠️ Сообществом LM Studio опубликованы квантованные версии в формате GGUF в разрядности от 3-bit (17.2 Gb) до 8-bit (34.8 GB), совместимые для запуска в
llama.cpp
(release b4191) и LM Studio.from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
@ai_machinelearning_big_data
#AI #ML #LLM #QwQ #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍10❤7👏2
QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.
Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.
⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:
Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.
@ai_machinelearning_big_data
#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍12❤6
💥Релиз Qwen2.5-1M!
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Модель 14B-1M выигрывает у гораздо более крупной модели Qwen 2.5 Turbo (предположительно MoE с тем же количеством активных параметров).
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@ai_machinelearning_big_data
#qwen #opensource #ml #llm
Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН 🔥
⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.
Модель 14B-1M выигрывает у гораздо более крупной модели Qwen 2.5 Turbo (предположительно MoE с тем же количеством активных параметров).
Доступен подробный технический отчет о серии Qwen2.5-1M! 📊
📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
▪ Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40
@ai_machinelearning_big_data
#qwen #opensource #ml #llm
👍56🔥30❤8
Одно из лучших иллюстрированных объяснение внутренностей DeepSeek-R1.
▪ Читать
▪ https://pika.art/
Наивное квантование всех слоев полностью ломает модель, вызывая бесконечные циклы и тарабарщину на выходе. Их динамические кванты решают эту проблему.
1,58-битный квант помещается в 160 ГБ VRAM (2x H100 80 ГБ) для быстрого вывода со скоростью ~140 токенов/сек.
Изучив архитектуру DeepSeek-R1, разработчики выборочно квантовали определенные слои в более высокие биты (например, в 4-битные), а большинство слоев MoE оставили в 1,5 бита.
▪Бенчмарки + блог
▪GGUF (131-212 ГБ) на Hugging Face:
▪Код
▪Демо
▪Qwen-2.5-VL
▪Qwen-2.5-1M
Netflix выпустили новый алгоритм искажения шума для генерации видео, достаточно быстрый, чтобы работать в реальном времени, который заменяет случайную временную гауссиану на коррелированный искаженный шум, полученный из полей оптического потока, который сохраняет при этом пространственную гауссиану. Эффективность алгоритма позволяет тонко настраивать современные модели диффузии видео с минимальными расходами и предоставляет универсальное решение для широкого спектра управления движением на видео. Обширные эксперименты и исследования демонстрируют преимущества метода, делая его надежным и масштабируемым подходом для управления движением в диффузионных моделях видео.
▪HF
▪Github
▪ Github
@ai_machinelearning_big_data
#ai #ml #news #llm #deepseek #Netflix #Qwen #Pika #news #ainews
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍50❤21🔥11🥰2
Alibaba релизнули еще одну модель: Qwen2.5-Max.
- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo
@ai_machinelearning_big_data
#Qwen #ml #llm #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤42🔥29👍24😁9
В релиз добавлен ряд улучшений:
🔥 torch.compile теперь поддерживает Python 3.13
🔥 Новый torch.compiler.set_stance
🔥 Улучшения в AOTInductor
🔥 Поддержка FP16 на процессорах X86.
Сегодня утром был опубликован Международный отчет о безопасности искусственного интеллекта, и OpenAI поделилась предварительными результатами тестов o3.
«значительно более высокие показатели, чем у любой предыдущей модели, в ряде самых сложных тестов в области программирования, абстрактного мышления и научного мышления»
- LLama 4 и LLama 4 mini (на претренинге)
- Подтверждает ризонинг в LLaMa!
- Llama 4 будет изначально мультимодальной
- это омни-модель
- она будет иметь агентские возможности.
- 👓 — идеальный форм-фактор для ИИ
- строительство центра обработки данных размером с Манхэттен
Компания Wiz Research обнаружила «DeepLeak» — общедоступную базу данных ClickHouse, принадлежащую DeepSeek, которая раскрывает крайне конфиденциальную информацию, включая секретные ключи, текстовые сообщения чата, сведения о бэкэнде и журналы.
Codegen - это новый SDK к мощному многоязычному языковому серверу,
Который позволяет делать рефакторинг, применение паттернов, анализ целых проектов и т. д.
Несмотря на открытие завода в Аризоне, TSMC по-прежнему производит большую часть своих чипов на Тайване.
А поскольку чипы TSMC обычно отправляются в Китай и другие азиатские страны для сборки, прежде чем попасть в США, эти пошлины в случае их введения могут привести к росту стоимости такой электроники, как iPhone, игровые графические процессоры и ноутбуки.
- превосходит лучшие малые модели в задачах оценки на 11 бенчмарках
- превосходит GPT-4o в RewardBench и EvalBiasBench
- отлично работает в реальных приложениях
Коллекция записных книжек, демонстрирующих варианты использования Qwen2.5-VL, включая локальную модель и API. Примеры включают в себя использование вычислений, пространственное понимание, разбор документов, мобильный агент, распознавание текста, Универсальное распознавание, понимание видео.
@ai_machinelearning_big_data
#pytorch #pytorchrelease #opensource #LLama #LLama4 #openai #chatgpt #ai #news #ml #llm #ainews #LumaLabsAI #Microsoft #DeepSeek #qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥86👍31❤26💯2😁1🕊1
Вводите промпт и ChatGPT найдет, проанализирует и синтезирует сотни онлайн-ресурсов, чтобы создать развернутый отчет за 10 минут работы, вместо нескольких часов, которые потребовались бы человеку.
Основные моменты:
— Уже доступен для пользователей Pro.
— Агент предоставит полный список источников, а также прокомментирует каждый из них;
— Хорошо подходит для решения задач, связанных с поиском в интернете.
— Набрал 26.6 % на «Последнем экзамене человечества».
ИИ превосходит существующие методы как по точности, так и по вычислительной эффективности, предлагая обновления прогнозов в реальном времени четыре раза в день через Google Cloud, BigQuery и Earth Engine.
Исследователи могут получить доступ как к текущим, так и к историческим прогнозам для анализа и планирования.
Внутри 2 мощных инструмента:
WeatherNext Graph:
- Формирует единый сверхточный прогноз.
- Обновления происходят каждые 6 часов.
- Предсказания делаются на 10 дней вперёд.
- Выдает прогнозы с максимальной точностью.
WeatherNext Gen:
- Генерирует ансамблевые прогнозы из 50 вероятных сценариев.
- Обновление прогноза происходит каждые 12 часов.
- Модель позволяет лучше оценивать риски экстремальных погодных явлений.
Преимущества над традиционными методами:
- Более высокая скорость обработки данных.
- Значительное повышение точности по сравнению с физическими моделями.
- Опенсорс
Внутри много интересного о DeepSeek, Китае, OpenAI, NVIDIA, xAI, Google, Anthropic, Meta, Microsoft, TSMC, Stargate, строительстве мегакластеров, RL, ризонинге и множестве других тем на передовых ИИ тематик.
Очень интересная и наполненная техническими деталями беседа.
- Новая модель: Qwen2.5-Plus теперь обновлен до qwen-plus-0125-exp, с новыми методами пост-тренинга. Разрыв с Qwen2.5-Max значительно сократился.
- Гибкие режимы: Убрали все ограничения на переключение между режимами в течение одной сессии! С.
- Неограниченный ввод: Поддержка текстов длиной более 10 000 символов
- Возможность загружайть файлы txt, pdf, docx, xlsx, pptx, md и другие. Теперь длинный ввод не требует усилий.
Резюме самых интересных открытий за первую неделю с момента появления DS.
Компания Reliance Group Мукеша Амбани, один из крупнейших и наиболее влиятельных индийских конгломератов, строит крупный центр обработки данных в Джамнагаре - небольшом городке в штате Гуджарат, где уже расположены крупные нефтеперерабатывающие и нефтехимические предприятия Reliance.
По сообщениям Bloomberg, общая мощность центра обработки данных, который может стать крупнейшим в мире, составит 3 гигаватта, что значительно увеличит текущую мощность индийских центров обработки данных, которая оценивается менее чем в 1 гигаватт.
Таким образом, он будет в пять раз больше, чем 600-мегаваттный центр Microsoft в Бойдтоне, штат Вирджиния.
Метахранилище - это высокомасштабируемый сервис метаданных во время выполнения, который работает с несколькими движками: BigQuery, Apache Spark, Apache Hive и Apache Flink, и поддерживает открытый формат таблиц Apache Iceberg
@ai_machinelearning_big_data
#DeepSeek #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #openai #google #deepmind #qwen #DataAnalytics #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102❤26🔥10👀2
Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.
Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.
Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость
Видео
- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv
С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo
Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.
На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.
Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github
Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.
А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще. Сила имени.
ssi.inc.
@ai_machinelearning_big_data
#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍38❤12😁7🥱3🤔2🌚1😭1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 В chat.qwenlm.ai chat теперь доступны голосовой режим + режим видеочата
Более того китайцы выложили код своей Qwen2.5-Omni-7B - единой omni-модели, которая может понимать текст, аудио, изображение и видео.
Они разработали архитектуру "thinker-talker", которая обеспечивает одновременное размышление модели и ее разговор .
Вскоре обещают выпустить в опенсорс модели на еще большее количество параметров.
Просто топ, бегом тестить.
🟢 Попробовать: https://chat.qwenlm.ai
🟢 Paper: https://github.com/QwenLM/Qwen2.5-Omni/blob/main/assets/Qwen2.5_Omni.pdf
🟢 Blog: https://qwenlm.github.io/blog/qwen2.5-omni
🟢 GitHub: https://github.com/QwenLM/Qwen2.5-Omni
🟢 Hugging Face: https://huggingface.co/Qwen/Qwen2.5-Omni-7B
🟢 ModelScope: https://modelscope.cn/models/Qwen/Qwen2.5-Omni-7B
@ai_machinelearning_big_data
#qwen #release #Omni
Более того китайцы выложили код своей Qwen2.5-Omni-7B - единой omni-модели, которая может понимать текст, аудио, изображение и видео.
Они разработали архитектуру "thinker-talker", которая обеспечивает одновременное размышление модели и ее разговор .
Вскоре обещают выпустить в опенсорс модели на еще большее количество параметров.
Просто топ, бегом тестить.
@ai_machinelearning_big_data
#qwen #release #Omni
Please open Telegram to view this post
VIEW IN TELEGRAM
❤49👍27🔥25
В релиз вошли 2 MoE-модели и 6 Dense models (плотные модели), размером от 0.6B до 235B параметров.
🏆 Флагманская модель Qwen3-235B-A22B демонстрирует конкурентные результаты в задачах Кодина, математики и общих способностей, уверенно соперничая с передовыми моделями, такими как DeepSeek-R1, o1, o3-mini, Grok-3 и Gemini-2.5-Pro.
⚡ Небольшая MoE-модель Qwen3-30B-A3B превосходит QwQ-32B, использую в 10 раз меньше параметров.
🔥 Компактная модель Qwen3-4B сопоставима по производительности с Qwen2.5-72B-Instruct.
🧠 Поддерживает гибридный режим мышления
Режим размышления активируется при обработке сложных задач, обеспечивая пошаговый анализ запроса и формирование комплексных, глубоких ответов.
Базовый режим используется для повседневных вопросов, позволяя выдавать быстрые и точные ответы с минимальной задержкой.
Процесс обучения модели устроен похожим образом на то, как это сделано в DeepSeek R1.
Поддерживает 119 языков, включая русский.
Лицензирование: Apache 2.0 🔥
@ai_machinelearning_big_data
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥110👍28❤21
🔋 Экономия памяти: по сравнению с 7B-версией модель потребляет на 50 % меньше VRAM при обработке длинного контекста (~25 000 токенов).
📺 Мультимодальные режим: поддержка 30-секундных аудио- и видео«из коробки» на 24 GB видеокартах.
🤖 Высокое качество: модель сохраняет свыше 90 % точности ответов и обеспечивает естественный, стабильный синтез речи на уровне 7B-модели.
#Qwen #omni #opensource
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51❤29🔥18
Web Dev — новый инструмент для создания готовых фронтенд-страниц и приложений в Qwen Chat.
🎨 Просто напишите: «Создай сайт как ...» — и готово! Вы получаете код приложения.
Сгенерировали парочку лендингов и простенькую игру для теста - хорошо понимает промпты, работает шустро.
@ai_machinelearning_big_data
#qwen #codegenerator #online
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥86👍35❤19😁6💋4👌2
Теперь Qwen3 можно развернуть через Ollama, LM Studio, SGLang и vLLM — выбирайте удобный формат (GGUF, AWQ или GPTQ) для локального деплоя.
Все модели доступны в коллекции Qwen3 на Hugging Face и ModelScope:
@ai_machinelearning_big_data
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍89🔥32❤16👏3
This media is not supported in your browser
VIEW IN TELEGRAM
После нескольких недель тестирования, функция Deep Research официально запущена и открыта для всех пользователей!
Как это работает?
Просто задай любой вопрос — например:
"Расскажи что-нибудь про робототехнику."
Qwen уточнит:
🔸 Хочешь узнать про историю, теорию или практическое применение?
🔸 Или скажи: "Не знаю… удиви меня!" 😄
Пока ты пьешь кофе ☕ — Qwen соберёт для тебя понятный, полезный и глубокий отчёт.
Попробовать💡
🔗 https://chat.qwen.ai/?inputFeature=deep_research
#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍125🔥48❤21🥰4🌭1
⚡️Релиз Qwen3-Embedding и Qwen3-Reranker
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
🟡 Qwen3-Embedding: https://huggingface.co/collections/Qwen/qwen3-embedding-6841b2055b99c44d9a4c371f
🟡 Qwen3-Reranker: https://huggingface.co/collections/Qwen/qwen3-reranker-6841b22d0192d7ade9cdefea
🟡 GitHub: https://github.com/QwenLM/Qwen3-Embedding
🟡 Modelscope: https://modelscope.cn/organization/qwen
@ai_machinelearning_big_data
#qwen
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
@ai_machinelearning_big_data
#qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
❤64👍31🔥19🥰5❤🔥2
Unsolth выложила в открытый доступ в своем репозитории на Github больше сотни готовых ipynb-блокнотов для запуска различных операций в Google Collab практически всех популярных семейств языковых моделей, BERT, TTS-моделей и VLM:
Блокноты включают пошаговые руководства и примеры для вызова инструментов, классификации, синтетических данных, подготовки сетов, инференса и файнтюна моделей и
примеры методов GRPO, DPO, SFT, Continued Pretraining, Reasoning и других.
Unsloth известна тем, что помогает делать большие языковые модели быстрее, компактнее и доступнее при помощи динамического квантования, что позволяет запускать их без сильной потери качества . Их технологии ускоряют обучение и настройку ИИ-моделей в 2 раза и экономят до 70% памяти. Инструменты Unsloth, на сегодняшний день, скачали более 10 млн раз.
Есть подробная документация по использованию, а для тех, кто больше привык к Kaggle - такой же набор блокнотов для запуска на этой платформе.
@ai_machinelearning_big_data
#AI #ML #LLM #Notebooks #Github #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥106👍25❤24❤🔥9🌭3
This media is not supported in your browser
VIEW IN TELEGRAM
Модель поэтапно строит изображение слева направо и сверху вниз, уточняя детали на каждом шаге. Это делает итоговую картинку качественной, естественной и согласованной.
Например, можно написать запрос:
«Сделай картинку милого кота» — и она появится.
А можно загрузить фото кота и попросить: «Добавь коту шапку» — и модель отредактирует изображение.
🎯 Что умеет Qwen VLo:
• Точная генерация: не путает объекты, сохраняет структуру, меняет, например, цвет машины на фото без искажений
• Редактирование по команде: «Сделай фото в стиле Ван Гога» или «добавь солнечное небо» — всё выполняется по инструкции
• Глубокое понимание: может обрабатывать сложные задачи — выделение объектов, сегментация, редактирование текста и фона
• Мультиязычность: понимает запросы на английском, китайском и других языках — просто опишите, что нужно
🧪 Сейчас Qwen VLo доступна в виде превью через Qwen Chat.
👉 Попробовать: https://chat.qwen.ai
👉 Детали: https://qwenlm.github.io/blog/qwen-vlo/
@ai_machinelearning_big_data
#Qwen #Alibaba #ai #genai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍40❤16🔥13
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.
@ai_machinelearning_big_data
#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤95👍38🔥23🤔7
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
👍79🔥21❤15👨💻2
🧠 Qwen3-MT — Alibaba продолжает жечь и выпускает еще одну модель, в этот раз для машинного перевода.
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
🟡 Попробовать демку: https://huggingface.co/spaces/Qwen/Qwen3-MT-Demo
🟡 ModelScope: https://modelscope.cn/studios/Qwen/Qwen3-MT-demo
🟡 Документация API: https://alibabacloud.com/help/en/model-studio/translation-abilities
🟡 Блог с подробностями: https://qwenlm.github.io/blog/qwen-mt/
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍122❤31🔥22🥰5🎃4