Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.
Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.
Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.
Это дает два главных преимущества:
При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.
@ai_machinelearning_big_data
#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍86❤43🔥23🥰8👌4😁2👨💻1
Media is too big
VIEW IN TELEGRAM
OpenAI объявила, что ее следующая конференция для разработчиков, DevDay, состоится 6 октября 2025 года в Сан-Франциско. На мероприятии выступят Сэм Альтман и Грэг Брокман. DevDay традиционно становится площадкой для главных анонсов OpenAI, и в этом году разработчикам обещают ранний доступ к информации о будущих продуктах и технологиях.
Конференция планирует собрать более 1500 разработчиков. Регистрация на очное участие открыта в формате подачи заявок до 30 июля, а приглашения будут разосланы в середине августа. Стоимость участия составит 650 долларов. Для тех, кто не сможет присутствовать лично, будет организована прямая трансляция основной части мероприятия, а записи остальных сессий опубликуют позже.
openai.com
Швейцарская компания Proton, известная своим одноименным почтовым сервисом, выпустила автономного ИИ-ассистента Lumo. Чат-бот позиционируется как безопасная альтернатива продуктам от крупных технологических корпораций.
Lumo умеет обобщать документы, писать код, составлять черновики писем и отвечать на веб-запросы. Сервис работает исключительно на открытых языковых моделях, размещенных в собственных дата-центрах Proton в Европе. Вся переписка защищена сквозным шифрованием с "нулевым доступом", что не позволяет самой компании или третьим лицам читать и хранить сообщения.
Попробовать Lumo можно без регистрации через веб-клиент или мобильные приложения, но с ограничениями. Платная подписка Lumo Plus за $12.99 в месяц снимает лимиты на общение и позволяет загружать файлы большего размера.
proton.me
Google DeepMind выпустила Aeneas, опенсорсный инструмент на базе ИИ, предназначенный для помощи историкам в работе с фрагментарными древними надписями. Система анализирует неполные транскрипции и изображения, после чего определяет вероятное место и дату происхождения текста, предлагает варианты недостающих слов и находит аналоги в корпусе известных надписей.
Модель, обученная на 200 000 каталогизированных текстов, является развитием более ранней системы Ithaca для греческого языка. В исследовании, опубликованном в Nature, Aeneas улучшил генерацию научных гипотез в 90% случаев, а его оценки происхождения и датировки совпали с консенсусом ученых.
Aeneas доступна бесплатно для ученых, преподавателей и сотрудников музеев.
theguardian.com
Amazon Web Services объявила о закрытии своей исследовательской ИИ-лаборатории в Шанхае. В компании это решение назвали трудным, оно завершает семилетнюю историю работы центра, который занимался передовыми разработками в области машинного обучения. По словам одного из научных сотрудников, подразделение расформировывают из-за "стратегических корректировок на фоне напряженности между США и Китаем".
Лаборатория, открытая в 2018 году, была весьма продуктивной: на ее счету более 100 научных публикаций и создание популярной open-source библиотеки Deep Graph Library. В лучшие времена в ней работало более 1000 человек.
ft.com
Устройство, разработанное в Reality Labs представляет собой браслет, который считывает электрическую активность мышц предплечья (sEMG), напрямую декодируя двигательные намерения пользователя.
Главное достижение - разработка универсальной модели, обученной на данных тысяч людей. В отличие от аналогов, требующих длительной настройки под каждого человека, эта система работает из коробки, без предварительной калибровки под новых пользователей.
В тестах интерфейс продемонстрировал распознавание рукописного ввода со скоростью почти 21 слово в минуту, точное определение дискретных жестов (щипки, свайпы) и плавное управление курсором. При этом короткая персональная донастройка на данных конкретного пользователя может повысить точность еще на 16%.
nature.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤58👍37🔥8👏4✍2🥰2👌2💯1
Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:
Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.
Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:
Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.
Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .
На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.
На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.
@ai_machinelearning_big_data
#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73❤50🔥35🤔7👀5🥰3🐳2
🧠 Qwen3-MT — Alibaba продолжает жечь и выпускает еще одну модель, в этот раз для машинного перевода.
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
🟡 Попробовать демку: https://huggingface.co/spaces/Qwen/Qwen3-MT-Demo
🟡 ModelScope: https://modelscope.cn/studios/Qwen/Qwen3-MT-demo
🟡 Документация API: https://alibabacloud.com/help/en/model-studio/translation-abilities
🟡 Блог с подробностями: https://qwenlm.github.io/blog/qwen-mt/
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍122❤31🔥22🥰5🎃4
Media is too big
VIEW IN TELEGRAM
Ключевым нововведением станет интеграция возможностей «o-серии», ориентированных на сложные логические рассуждения, в основную линейку GPT. Ожидается, что модель выйдет в нескольких вариантах: основная, «mini» и «nano». Полноразмерная и мини-версии будут доступны через ChatGPT и API, а нано-версия - только по API.
Сэм Альтман подтвердил, что уже тестирует GPT-5, описав ее как "умнее нас почти во всех отношениях", хотя и признал, что она вряд ли достигнет порога AGI на старте.
Релизу будет предшествовать выпуск открытой модели, похожей на o3-mini, до конца июля.
Запуск GPT-5 может быть отложен из-за проблем с безопасностью или мощностями, но инженеры Microsoft уже готовят дополнительные серверные ресурсы.
theverge.com
Президент США обнародовал "План действий в области ИИ" и подписал указы, направленные на ускорение строительства дата-центров и сворачивание федерального надзора. Документ содержит более 90 рекомендаций, включая упрощение разрешений для проектов мощностью свыше 100 МВт и использование федеральных земель и налоговых льгот для поддержки новых ЦОД и полупроводниковых производств.
В области торговли план предписывает продвигать экспорт американских ИИ-систем в союзные страны, но сохранять запрет на поставки передовых чипов противникам (Китай). Кроме того, Белый дом требует от федеральных ведомств использовать только "идеологически нейтральные" ИИ-модели и предупреждает штаты о возможном удержании финансирования за обременительные правила.
wsj.com
Google добавила в сервис Google Photos два новых творческих ИИ-инструмента - Photo to Video и Remix. Функция Photo to Video, работает на базе Veo 2 и позволяет оживлять статичные фотографии, превращая их в шестисекундные видеоролики с небольшой динамикой. Пользователи могут выбрать один из двух пресетов: "Subtle movements" или "Мне повезет!".
Remix стилизует фотографии под аниме, комиксы, наброски или 3D-анимацию. Оба нововведения располагаются в новой вкладке "Create", которая объединит все творческие функции приложения в одном месте.
Новые функции начнут поэтапно развертываться для пользователей в США в ближайшие несколько недель.
blog.google
Исследование, проведенное FutureHouse, выявило серьезные проблемы с достоверностью Humanity’s Last Exam (HLE) - одного из сложнейших бенчмарков для оценки возможностей ИИ-моделей. Анализ показал, что около 29% ответов в разделах по химии и биологии напрямую противоречат рецензируемой научной литературе.
Причиной такого высокого уровня ошибок называют саму методологию создания HLE. Целью было составить вопросы, на которые современные модели не могут дать ответ, что привело к появлению запутанных формулировок. Процесс проверки также был слабым: рецензентам давалось не более 5 минут на вопрос, и они не были обязаны верифицировать точность обоснований.
Для проверки команда FutureHouse использовала собственного ИИ-агента, который сверял ответы с научными публикациями. По итогам исследования, FutureHouse выпустила HLE Bio/Chem Gold - выверенный набор данных из вопросов HLE.
futurehouse.org
Илон Маск анонсировал в X, что компания планирует перезапустить популярный в прошлом сервис коротких видео Vine, но с интеграцией искусственного интеллекта. Он не раскрыл технических деталей и сроков запуска.
Сервис Vine, запущенный в 2013 году, был закрыт в 2017 на фоне конкуренции со стороны Snapchat и TikTok. После покупки Twitter (ныне X) Маск неоднократно проводил опросы среди пользователей, интересуясь, стоит ли возвращать платформу.
Илон Маск в сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤46👍20🔥13👏4🤬3👨💻2
VK обновила RuModernBERT — модель для обработки естественного русского языка. Она доступна на 150 и 35 миллионов параметров, обучена на 2 триллионах токенов.
Модель подойдет для задач в области обработки текста, например, для извлечения информации, анализа тональности, поиска и ранжирования в приложениях и сервисах — от книг и статей до соцсетей и кода. А еще есть две дополнительные версии для лучшей группировки и поиска похожей информации.
По скорости обгоняет аналоги: на длинных текстах — в 2–3 раза, на устройствах — на 10–20%. В тестах показала лучший результат среди русскоязычных NLP-решений.
Забрать можно на Hugging Face
Модель подойдет для задач в области обработки текста, например, для извлечения информации, анализа тональности, поиска и ранжирования в приложениях и сервисах — от книг и статей до соцсетей и кода. А еще есть две дополнительные версии для лучшей группировки и поиска похожей информации.
По скорости обгоняет аналоги: на длинных текстах — в 2–3 раза, на устройствах — на 10–20%. В тестах показала лучший результат среди русскоязычных NLP-решений.
Забрать можно на Hugging Face
👍91🤣32❤22🔥15😐11🌚7
Forwarded from Анализ данных (Data analysis)
🚀 Команда Qwen только что представила новую модель: Qwen3‑235B‑A22B‑Thinking‑2507, нацеленную на глубокие рассуждения.
За последние 3 месяца модель была масштабирована и доработана специально для задач логики, математики, науки и программирования. Среди ключевых улучшений:
✅ Улучшенные способности к рассуждению, решению задач и анализу
✅ Повышенная точность в следовании инструкциям и использовании инструментов
✅ Поддержка нативного 256K контекста — для полноценной работы с длинными цепочками мыслей
🧠 Модель изначально работает в режиме reasoning — включать ничего не нужно. Она самостоятельно строит длинные логические цепочки, обеспечивая максимальную глубину и точность.
🟡 Hugging Face: https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
or https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🟡 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507
or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🟡 API Doc: https://alibabacloud.com/help/en/model-studio/models#16ff9753e1ctz
🧩 Новый Thinking‑режим поднимает планку для reasoning‑моделей в открытом доступе.
@data_analysis_ml
За последние 3 месяца модель была масштабирована и доработана специально для задач логики, математики, науки и программирования. Среди ключевых улучшений:
✅ Улучшенные способности к рассуждению, решению задач и анализу
✅ Повышенная точность в следовании инструкциям и использовании инструментов
✅ Поддержка нативного 256K контекста — для полноценной работы с длинными цепочками мыслей
🧠 Модель изначально работает в режиме reasoning — включать ничего не нужно. Она самостоятельно строит длинные логические цепочки, обеспечивая максимальную глубину и точность.
or https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🧩 Новый Thinking‑режим поднимает планку для reasoning‑моделей в открытом доступе.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59🔥24❤19✍2🥰2🤣2
This media is not supported in your browser
VIEW IN TELEGRAM
Google Labs запустила публичную бета-версию инструмента Opal, в котором можно создавать простые ИИ-приложения без написания кода.
Пользователь описывает желаемую цель тестом, после чего система автоматически генерирует визуальную блок-схему рабочего процесса, объединяя в цепочку промпты, ИИ-модели и внешние инструменты.
Схему можно гибко редактировать в drag-and-drop интерфейсе или с помощью дальнейших текстовых команд.
Готовые проекты публикуются как самостоятельные веб-приложения, привязанные к аккаунту Google, и ими можно сразу поделиться по ссылке.
В основе Opal лежат модели Gemini. Инструмент доступен пока только для пользователей в США.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤49👍24🔥14👨💻3😁2
Андрей Рыбинцев, возглавлявший ИИ-направление более 10 лет, стал управляющим директором по искусственному интеллекту и вошел в правление компании. AI становится частью управленческой вертикали Авито.
Под его руководством окажется объединенная команда из ключевых подразделений, связанных с ИИ. Также в планах новый кластер AI Experience,который будет фокусироваться на развитии AI-ассистентов.
На счету Рыбинцева — запуск семейства моделей A-Vibe и A-Vision, антифрод, IMV и масштабирование Data Science в Авито. По прогнозам компании, GenAI может привнести более 21 млрд ₽ дополнительной выручки к 2028 году.
Под его руководством окажется объединенная команда из ключевых подразделений, связанных с ИИ. Также в планах новый кластер AI Experience,который будет фокусироваться на развитии AI-ассистентов.
На счету Рыбинцева — запуск семейства моделей A-Vibe и A-Vision, антифрод, IMV и масштабирование Data Science в Авито. По прогнозам компании, GenAI может привнести более 21 млрд ₽ дополнительной выручки к 2028 году.
🤷♂68🔥23❤12😁12🤣9👌6🥰3
Научить робота уверенно брать предметы - это, кажется, вечная тема в робототехнике. Несмотря на десятилетия исследований, надежные и универсальные системы захвата до сих пор остаются скорее теорией, чем реальностью.
Стоит копнуть глубже стандартных демо, и выясняется, что на сложных бенчмарках, FetchBench например, точность лучших систем едва дотягивает до 20%. Это фундаментальный барьер, мешающий внедрять роботов в реальные, неструктурированные среды.
GraspGen - фреймворк для генерации 6-DOF захватов, который не только показывает SOTA результаты, но и вводит новый, крайне интересный подход к обучению.
В его основе лежит связка из генератора на базе Diffusion Transformer и дискриминатора, знакомая всем по GAN-ам архитектура, но с важным отличием.
Генератор, получив на вход облако точек объекта, предлагает множество вариантов захвата, а дискриминатор оценивает их качество и отсеивает неудачные.
И вот тут-то и кроется основная идея, которую в NVIDIA назвали «On-Generator Training». Вместо того чтобы обучать дискриминатор на заранее собранном офлайн-датасете из "хороших" и "плохих" захватов, его учат непосредственно на тех ошибках, которые генерирует его подопечный - диффузионная модель.
Иными словами, дискриминатор становится экспертом не в захватах вообще, а в типичных промахах конкретного генератора. Он учится распознавать и отбраковывать именно те ложноположительные варианты, которые сам генератор считает удачными, но которые на самом деле приведут к провалу. Такой подход создает мощную и целенаправленную обратную связь.
Разработчики выпустили симулированный датасет, содержащий более 53 млн. примеров захватов для 3 разных типов манипуляторов, включая параллельные захваты и вакуумные присоски.
В симуляции на сете ACRONYM GraspGen показывает AUC (площадь под кривой точность-покрытие) 0.94, это больше ближайших конкурентов на 48%.
На комплексном бенче FetchBench он обошел предыдущих лидеров M2T2 и Contact-GraspNet на 7.8% и 16.9% соответственно.
Но самое главное - это тесты на реальном железе. В экспериментах с роботом UR10 в зашумленной среде GraspGen достиг общей успешности в 81.3%, в то время как M2T2 и AnyGrasp показали лишь 52.6% и 63.7%.
Код, веса моделей и датасет уже доступны на GitHub и Hugging Face.
Авторы позаботились об энтузиастах: есть подробные инструкции по установке через Docker или pip, готовые демо-скрипты, позволяющие визуализировать захваты для своих облаков точек или 3D-моделей буквально в несколько команд.
Более того, GraspGen изначально спроектирован как модульная и расширяемая система. Разработчики предоставляют подробный туториал, который объясняет, как генерировать данные и обучать модели для совершенно новых объектов и, что важнее, новых типов манипуляторов, реализуя принцип BYOD.
Интеграция с симулятором Isaac Lab для еще более продвинутой генерации данных и возможность дообучения на реальных данных.
@ai_machinelearning_big_data
#AI #ML #Robotics #GraspGen #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47❤27👍21😁3🎉3👨💻1
Media is too big
VIEW IN TELEGRAM
В эти выходные в Шанхае откроется Всемирная конференция по искусственному интеллекту, которая соберет как китайских технологических гигантов, Huawei и Alibaba, так и западные компании: Tesla, Google и Amazon.
Более 800 компаний представят свыше 3000 высокотехнологичных продуктов. Ожидается показ 40 больших языковых моделей, 50 ИИ-устройств и 60 интеллектуальных роботов.
reuters.com
Южнокорейский техногигант хочет предложить пользователям больше опций выбора в ИИ-сервисах на своих устройствах, помимо уже интегрированной Google Gemini.
По словам Чхве Вон-Джуна, операционного директора мобильного подразделения, начиная с линейки Galaxy S26, компания планирует предоставить клиентам выбор из нескольких ИИ-сервисов.
bloomberg.com
Мустафа Сулейман, CEO Microsoft AI, поделился своим видением будущего ассистента Copilot. По его мнению, он станет настолько персонализированным, что обретет постоянную идентичность, будет стареть и даже жить в своей комнате. Первым шагом к этой концепции стала новая функция Copilot Appearance.
Это эксперимент по созданию виртуального персонажа, который в реальном времени реагирует на диалог с помощью мимики и голоса и обладает памятью о предыдущих разговорах. Аватар может улыбаться, кивать и даже выражать удивление.
Функция уже доступна в режиме раннего доступа в Copilot Labs для ограниченного числа пользователей в США, Великобритании и Канаде.
theverge.com
MIT CSAIL представил Neural Jacobian Fields (NJF) - систему, которая кардинально меняет подход к управлению роботами. Вместо создания сложных математических моделей для жестких и дорогих конструкций, NJF позволяет роботу самостоятельно изучить свое тело и его реакции на команды, используя только зрение.
В процессе обучения робот совершает случайные движения, а система, в это время, наблюдает за ним с нескольких камер, выстраивая внутреннюю модель его физики м связывая управляющие сигналы с фактическим движением. В основе лежит развитие технологии NeRF.Ценность разработки в том, что после обучения, для управления в реальном времени роботу достаточно одной обычной камеры.
Технология уже успешно протестирована на различных устройствах, от мягких пневматических манипуляторов до стандартных 3D-печатных конструкций. Хотя система пока не обладает тактильной обратной связью, она открывает путь к созданию более дешевых и гибких роботов, способных адаптироваться к своей собственной, даже нестандартной, физической форме.
news.mit.edu
Leena AI, разработчик корпоративных ассистентов, анонсировала запуск "ИИ-коллег" - агентов нового поколения, которые могут общаться с сотрудниками голосом.
По мнению CEO компании, голосовое общение станет следующим этапом в развитии рабочих инструментов. Оно позволяет сотрудникам решать задачи на ходу, например, за рулем или в очереди. Так, пользователь может голосом попросить ассистента завести новую сделку в Salesforce и одновременно подготовить запрос в технический отдел по итогам встречи. Агент самостоятельно заполнит формы и составит черновик письма, запросив подтверждение перед отправкой.
У агентов есть личностные черты и даже есть любимая спортивная команда. Утром "ИИ-коллега" может "проснуться", просмотреть заметки и продолжить работу над задачами, как обычный сотрудник. В Leena AI прогнозируют, что технология может повысить продуктивность команд до 50%.
siliconangle.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65❤15🥰15🔥6👨💻2😨2🎉1