Media is too big
VIEW IN TELEGRAM
🚀 Cosmos-Predict2 — новая открытая версия видео-модели для Physical AI от NVIDIA!
Cosmos-Predict2 — ключевая часть экосистемы World Foundation Models (WFMs), созданная для Physical AI. Модель умеет предсказывать будущее состояние визуального мира, используя текст и видео. Cosmos разработан для ускорения обучения моделей, которые понимают физику, среду и действия — от автономных автомобилей до роботов. Выглядит очень интересно.
Это самое мощное поколение моделей в экосистеме Cosmos. Модель заметно улучшена по сравнению с Predict1:
🎯 лучшее качество видео
🧠 точнее соответствует текстовому описанию
🎥 более реалистичная динамика движения
📊 Cosmos-Predict2 превосходит другие open-source видео foundation-модели.
▪ Веса
▪ Полный код для инференса и обучения (с туториалами)
@ai_machinelearning_big_data
#Cosmos #NVIDIA
Cosmos-Predict2 — ключевая часть экосистемы World Foundation Models (WFMs), созданная для Physical AI. Модель умеет предсказывать будущее состояние визуального мира, используя текст и видео. Cosmos разработан для ускорения обучения моделей, которые понимают физику, среду и действия — от автономных автомобилей до роботов. Выглядит очень интересно.
Это самое мощное поколение моделей в экосистеме Cosmos. Модель заметно улучшена по сравнению с Predict1:
🎯 лучшее качество видео
🧠 точнее соответствует текстовому описанию
🎥 более реалистичная динамика движения
📊 Cosmos-Predict2 превосходит другие open-source видео foundation-модели.
▪ Веса
▪ Полный код для инференса и обучения (с туториалами)
@ai_machinelearning_big_data
#Cosmos #NVIDIA
Media is too big
VIEW IN TELEGRAM
По аналогии с автосалонами, робототехнический 4S будет предлагать полный цикл: продажи (Sales), сервис (Service), запчасти (Spare parts) и консультации/анализ (Surveys). Планируется зона с демонстрацией роботов в реалистичных сценариях – можно будет всё пощупать руками и увидеть их возможности в деле. Плюс создадут быструю сеть поставки комплектующих по стране и соберут профильную команду для сборки, ремонта и обслуживания машин.
Первыми партнерами станут несколько лидеров сферы: UBTECH и Galaxea. Откроется центр в августе на базе промпарка в районе Ичжуан на юге столицы.
english.news.cn
The Browser Company открыл доступ к бета-версии браузера Dia (по инвайтам). Dia позиционируется как решение, где ИИ глубоко интегрирован в самую суть взаимодействия, он встроен прямо в рабочий процесс пользователя, избавляя от необходимости постоянно ходить на сайты ChatGPT или Claude.
Dia построен на Chromium, так что интерфейс многим знаком. Главная фича — умная адресная строка: она работает и как поиск, и как чат-бот с ИИ. Помощник умеет искать в сети, суммировать загруженные файлы, автоматически переключаться между режимами. Можно даже спросить его о содержимом всех открытых вкладок или попросить составить черновик на их основе.
Настройки производятся через диалог с ботом: можно задать тон, стиль письма, параметры для кода. Опция History (по желанию) позволяет браузеру использовать недельную историю просмотров как контекст для ответов. А функция Skills помогает создавать мини-скрипты — ярлыки для сложных настроек или действий.
techcrunch.com
Mistral AI анонсировала Mistral Compute - инфраструктурную платформу для разработки и запуска ИИ. Это полноценный приватный стек: от GPU и систем оркестрации до API и сервисов. На выбор любой формат, от bare-metal до полностью управляемой PaaS.
Mistral Compute нацелен дать государствам, компаниям и научным центрам, ищущих альтернативу решениям из США или Китая, возможность самим строить ИИ-среду под свои нужды и полностью ею владеть.
Платформа использует новейшие архитектуры NVIDIA, с доступом к десяткам тысяч GPU. Она создана командой с огромным опытом в HPC и обучении топовых ИИ-моделей. Ключевые акценты: устойчивость и суверенитет данных, инфраструктура соответствует строгим европейским нормам и работает на декарбонизированной энергии.
mistral.ai
Seedance 1.0 - новая генеративная модель для создания видео, которая, по утверждениям ByteDance, превосходит конкурентов в точности выполнения запросов, качестве движений и резкости изображения. В тестах на Artificial Analysis она лидирует в задачах text-to-video и image-to-video, обходя Google Veo 3, Kuaishou Kling 2.0 и OpenAI Sora. Модель справляется с длинными сценами, сохраняя стабильность персонажей и переходов между ракурсами, но пока не поддерживает добавление звука.
Seedance 1.0 генерирует 5-секундный Full HD-ролик за 41 секунду — это быстрее аналогов, хотя новый Google Veo 3 Fast может нивелировать это преимущество. Инструмент планируют внедрить в платформы Doubao и Jimeng. Целевая аудитория — от профессиональных видеомейкеров до обычных пользователей.
seed.bytedance.com
Midjourney объявила о начале открытого тестирования модели генерации видео по текстовым запросам. Задача тестирования собрать обратную связь для улучшения алгоритма.
Создатели пригласили сообщество принять участие в онлайн-рейтинге сгенерированных роликов, присоединиться можно по ссылке. Пока некоторые образцы выглядят достойно и сохраняют фирменный стиль Midjourney, но в целом результаты пока нестабильны.
Компания подчеркивает: это не финальная версия модели, а лишь первый шаг. Дополнительные сессии тестирования уже запланированы, но дату релиза и цену пока не раскрывают.
midjourney.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚨 NVIDIA показала будущее ИИ на GTC Paris
Вот 7 самых интересных анонсов 👇
1️⃣ NVL72 — система из 72 Blackwell GPU
NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4
2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг
3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир
4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.
5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами
6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.
7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.
@ai_machinelearning_big_data
#NVIDIA #GTC
Вот 7 самых интересных анонсов 👇
1️⃣ NVL72 — система из 72 Blackwell GPU
NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4
2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг
3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир
4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.
5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами
6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.
7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.
@ai_machinelearning_big_data
#NVIDIA #GTC
Первая полностью open-source, готовая к продакшену PBR 3D генеративная модель!
PBR (Physically Based Rendering) - это технология, при которой внешний вид 3D-объектов рассчитывается с учётом реальных физических законов взаимодействия света и поверхности.
✅ Модель выдает кинематографичное качество: синтез PBR-материалов — кожа, бронза и другие поверхности выглядят фотореалистично с красивыми эффектами освещения.
✅ Open source: доступны веса модели, код для обучения и инференса, пайплайны — всё можно доработать под себя.
✅ Запускается даже на потребительских GPU (Модель тестировалась на GPU A100 с Python 3.10 и PyTorch 2.5.1+cu124.) — с моделью создавать 3D-контент могут не только студии, но и любые разработчики и малые команды.
▪ Модель: https://huggingface.co/tencent/Hunyuan3D-2.1
▪ Github: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
▪ Hunyuan 3D Creation Engine: https://3d.hunyuan.tencent.com
@ai_machinelearning_big_data
#Hunyuan3D #OpenSource #3DCreation #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Weather Lab - это сервис, где Google DeepMind тестирует экспериментальные модели ИИ для прогноза тропических циклонов. Инструмент генерирует 50 сценариев развития стихии за 15 дней, используя стохастические нейросети.
Традиционные физические модели часто жертвуют точностью интенсивности ради прогноза траектории, но ИИ-система DeepMind совмещает оба параметра. В тестах ее предсказания на 5 дней в среднем ближе к реальным координатам циклона на 140 км по сравнению с ведущими глобальными решениями. Также модель превосходит региональные физические аналоги в оценке силы урагана и радиуса ветров.
deepmind.google
Исследователи из Anthropic, Университетов Нью-Йорка и Джорджа Вашингтона разработали метод Internal Coherence Maximization (ICM), который учит языковые модели работать с задачами, опираясь на собственную логику. Модель сама проверяет, насколько ответы согласуются между собой (взаимная предсказуемость) и нет ли противоречий (логическая непротиворечивость).
На тестах (TruthfulQA, GSM8K, Alpaca) ICM показал результаты, сравнимые с обучением на человеческих оценках, а в задачах на «субъективные» критерии даже превзошел их. Например, модель без специальной тренировки определила пол автора текста с точностью 80% — выше, чем у людей. Даже при обучении чат-бота Claude 3.5 Haiku через ICM система выигрывала в 60% случаев против версии с человеческим контролем.
Однако метод не всесилен: он работает только с теми понятиями, которые модель уже «знает», и терпит неудачу с длинными текстами или задачами, требующими новых знаний.
alignment-science-blog.pages.dev
Совместная работа NVIDIA и Stability AI позволила ускорить генерацию в Stable Diffusion 3.5 и сократить использование видеопамяти. Модель Large, ранее требовавшая 18 ГБ VRAM, теперь работает с 11 ГБ благодаря FP8-квантованию, что делает ее доступной для большего числа GPU. На RTX 40-й серии и Blackwell-чипах FP8 и FP4 показали двукратный прирост производительности по сравнению с PyTorch.
TensorRT оптимизировал граф модели и веса под Tensor Cores, ускорив SD3.5 Large на 2,3x и Medium — на 1,7x. Разработчики также получили облегченный SDK (в 8 раз меньше) с JIT-компиляцией, позволяющий строить движки «на лету» через Windows ML. Оптимизированные версии уже доступны на Hugging Face, а в июле появится NIM-микросервис для упрощения интеграции в приложения.
blogs.nvidia.com
Google расширила возможности Gemini AI в Workspace, добавив функции для анализа PDF и Google-форм. Система автоматически создает краткие сводки при открытии PDF, предлагая действия «составить предложение» или «сгенерировать вопросы ». Эти подсказки появляются в боковой панели и работают на 20+ языках с 12 июня.
Для Google-форм ИИ теперь подводит итоги ответов на открытые вопросы, выделяя ключевые темы. Эта опция активируется при трех и более ответах и станет доступна с 26 июня, но пока только на английском. Еще одна новинка, которую видят пользователи с 7 июля — «помоги создать форму», позволяющая генерировать шаблоны на основе описаний и прикреплённых файлов (Docs, Sheets и т.д.).
workspaceupdates.googleblog.com
Четверо китайских инженеров прилетели в Малайзию с чемоданами, набитыми жесткими дисками: 80 терабайт данных для обучения ИИ. В местном дата-центре их компания арендовала 300 серверов с чипами Nvidia, запрещенными к экспорту в Китай. Подобные схемы — ответ на давление США, ограничивающее поставки технологий.
Физическая доставка данных вместо медленной передачи через интернет, создание подставных компаний в Малайзии и переадресация оборудования через третьи страны — так китайские фирмы обходят контроль. Но санкции сжимаются: Nvidia усиливает проверки, а страны ЮВА ужесточают правила.
wsj.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
МЛ: t.iss.one/machinelearning_ru
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
МЛ: t.iss.one/machinelearning_ru
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
This media is not supported in your browser
VIEW IN TELEGRAM
📄 Dolphin — новая OCR модель ByteDance для понимания сложных документов в виде изображений
Dolphin — это мультимодальная модель, которая умеет разбирать сканы и фотографии документов, включая текст, таблицы, формулы и графики.
Подойдет для автоматизации чтения и структурирования PDF-файлов, отсканированных отчётов и научных статей.
Как работает модель:
1️⃣ Анализ страницы — модель определяет порядок элементов доцентов так, как читает человек
2️⃣ Разбор содержимого — параллельно обрабатываются абзацы, таблицы, формулы и другие элементы, используя специальные встроенные промпты
Архитектура:
• Визуальный энкодер — Swin Transformer
• Текстовый декодер — MBart
• Управление через промпты
📌 Возможности:
• Постраничная обработка документа
• Точечный парсинг отдельных элементов (например, таблиц)
• Высокая точность и скорость работы модели
• Открытая MIT-лицензия
Установка:
• Github
• HF
• Demo
@ai_machinelearning_big_data
#ocr #ByteDance
Dolphin — это мультимодальная модель, которая умеет разбирать сканы и фотографии документов, включая текст, таблицы, формулы и графики.
Подойдет для автоматизации чтения и структурирования PDF-файлов, отсканированных отчётов и научных статей.
Как работает модель:
1️⃣ Анализ страницы — модель определяет порядок элементов доцентов так, как читает человек
2️⃣ Разбор содержимого — параллельно обрабатываются абзацы, таблицы, формулы и другие элементы, используя специальные встроенные промпты
Архитектура:
• Визуальный энкодер — Swin Transformer
• Текстовый декодер — MBart
• Управление через промпты
📌 Возможности:
• Постраничная обработка документа
• Точечный парсинг отдельных элементов (например, таблиц)
• Высокая точность и скорость работы модели
• Открытая MIT-лицензия
Установка:
git clone https://github.com/ByteDance/Dolphin.git
cd Dolphin
• Github
• HF
• Demo
@ai_machinelearning_big_data
#ocr #ByteDance