Media is too big
VIEW IN TELEGRAM
Облачный стартап Lambda объявил о многомиллиардном соглашении с Microsoft на создание новой инфраструктуры для ИИ. Она будет оснащена десятками тысяч чипов Nvidia, в частности системами NVIDIA GB300 NVL72. Точная сумма сделки не раскрывается.
Lambda была основана в 2012 году и специализируется на облачных сервисах для обучения и развертывания ИИ-моделей. Новое соглашение позволит ей значительно нарастить мощности на фоне растущего спроса на ИИ. В планах не только аренда дата-центров, но и строительство собственной инфраструктуры.
lambda.ai
Китайский техногигант выпустил предварительную ризонинг-версию своей топовой модели Qwen3-Max, которая все еще находится на стадии обучения. Модель показала в тестах стопроцентный результат на сложных бенчмарках для оценки логического мышления (AIME 2025 и HMMT).
Под капотом - 1 трлн. параметров на архитектуре MoE, так же как и в родительской Max, Alibaba обещает, что обучение будет продолжено. Попробовать превью уже можно в Qwen Chat и через API Alibaba Cloud.
Qwen в сети X
IBM опубликовала новое семейство открытых моделей Granite 4.0 Nano, которые созданы для работы в составе ИИ-агентов. Версия на 350 млн. параметров может работать на обычном CPU с 8–16 ГБ ОЗУ, а для варианта на 1,5 млрд. хватит GPU с 6-8 ГБ видеопамяти.
Семейство построено на гибридной архитектуре Mamba-2+Transformer, что позволило снизить потребление памяти на 70% и удвоить скорость инференса по сравнению с аналогами. По словам IBM, Granite 4.0 Nano показывают SOTA в следовании инструкциям и использовании инструментов. Все модели под Apache 2.0 и доступны на HuggingFace.
huggingface.co
В Университете KAUST создали ИИ-агента Huxley-Gödel Machine (HGM), который может самосовершенствоваться, изменяя собственный код. Система не затрагивает ядро языковой модели, а переписывает окружающую ее инфраструктуру: управляющую логику, скрипты и инструменты.
Главное отличие от конкурентов в фокусе на долгосрочной продуктивности, а не на результатах в бенчах. Для этого был создан показатель Clade Metaproductivity (CMP), который мониторит совокупную эффективность всех потомков агента.
В тесте SWE-Bench Verified, HGM-агент на базе GPT-5-mini решил 61.4% проблем. Это лучше, чем существующие агенты с той же моделью. Код агента доступен на Github.
arxiv.org
Skyfall-GS способна создавать детализированные и проходимые 3D-модели городов, используя только стандартные спутниковые изображения. В отличие от старых методов, которые могут воссоздать лишь крыши, Skyfall-GS генерирует недостающие элементы, что на выходе дает фотореалистичные городские пространства.
Пайплайн состоит из 3D Gaussian splatting (базовый 3D-каркас города) и диффузионных моделей, которые дорисовывают недостающие элементы (стены зданий и текстуры на уровне земли).
Skyfall-GS работает с 11 FPS на потребительском GPU и, по тестам, лучше аналогичных методик. Код проекта опубликован на GitHub.
skyfall-gs.jayinnn.dev
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59❤27🔥8👏3
В свежем выпуске подкаста канала Bg2Pod CEO Microsoft Сатья Наделла пожаловался, что у компании не хватает электроэнергии для питания инфраструктуры ИИ.
Он опасается, что в итоге у Microsoft может оказаться куча чипов, которые просто будут лежать без дела, потому что не хватает энергии, чтобы их подключить.
Оказывается, что проблема не в поставках чипов, а в отсутствии готовых ЦОДов, расположенных рядом с крупными источниками электроэнергии.
OpenAI выражает обеспокоенность по этому поводу и просит правительство США добавить 100 гигаватт в год к производству электроэнергии в качестве стратегического актива для ИИ.
Этот дефицит электроэнергии приводит к потере капитала, поскольку графические ускорители теряют свою стоимость в ожидании готовности зданий, подстанций и линий электропередачи.
Даже если обучение останется централизованным, спрос на вычисления является основным фактором, влияющим на потребление электроэнергии, поэтому любой переход к эффективным периферийным устройствам изменит предположения о размерах энергосистемы и центров обработки данных.
Основная
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51❤22😁20🔥11👀5🗿4🤨2💋1💘1
Media is too big
VIEW IN TELEGRAM
Google анонсировала проект Suncatcher, который будет строить ML-инфраструктуру в космическом пространстве. Концепция состоит из развертывания группировок спутников, оснащенных TPU и связанных оптическими каналами. Идея проекта в том, что на правильной орбите солнечная панель может быть до 8 раз продуктивнее, чем на Земле, а значит космос - это лучшее место для масштабирования вычислений.
Для реализации еще предстоит решить как поддерживать высокоскоростную межспутниковую связь, которая требует полета аппаратов в очень плотном строю (километр или менее). К началу 2027 года планируют запуск двух прототипов спутников для проверки работы оборудования на орбите.
research.google
Новый рекорд производительности был получен на виртуальных машинах Azure ND GB300 v6, запущенных на стоечной системе NVIDIA GB300 NVL72. В ходе тестов была достигнута совокупная скорость инференса модели Llama 2 70B в 1.1 млн токенов в секунду. Это на 27% больше предыдущего рекорда, установленного на GB200.
Новая конфигурация дала почти пятикратный прирост пропускной способности на один GPU по сравнению с поколением H100. Ключевыми факторами стали возможности архитектуры Blackwell, использование FP4 и оптимизация библиотеки NVIDIA TensorRT-LLM. Результаты были подтверждены независимой аналитической компанией Signal 65. Логи запуска тестового инстанса можно посмотреть на Github.
techcommunity.microsoft.com
Платформа вводит новые, более строгие правила для раздела Computer Science. Причиной стал резкий рост числа обзорных и концептуальных статей низкого качества, многие из которых созданы с помощью нейросетей.
Теперь работы будут приниматься к публикации только после того, как их одобрят в рецензируемом научном журнале или на конференции. Авторам потребуется предоставить соответствующее подтверждение при загрузке работы, в противном случае статья будет отклонена. Новая политика не затрагивает обычные исследовательские статьи, однако в будущем может быть распространена и на другие научные области, если там возникнет схожая проблема.
blog.arxiv.org
AgiBot в партнерстве с Longcheer Technology развернула систему обучения с подкреплением в реальном мире (RW-RL) на пилотной производственной линии. Это первый подтвержденный случай промышленного применения технологии, которая позволяет роботам обучаться непосредственно в процессе работы, а не следовать жестким инструкциям.
С RW-RL роботы AgiBot осваивают новые навыки за минуты, автономно адаптируясь к изменениям в деталях или производственных допусках. Система поддерживает стабильность промышленного уровня и не требует сложной аппаратной модификации при смене продукта. После успешного пилотного проекта компании планируют расширить применение RW-RL на сборку потребительской электроники и автомобильных компонентов.
gizmochina.com
Scale AI и Center for AI Safety опубликовали результаты бенчмарка Remote Labor Index, который оценивает способность ИИ выполнять реальную работу фрилансеров. В рамках теста исследователи взяли 240 завершенных проектов с биржи Upwork и поставили идентичные задачи 6 топовым ИИ-системам.
Результаты показали, что даже лучшие модели справились с заданиями на человеческом уровне лишь в 2.5% случаев. Почти 97% работ были признаны неудовлетворительными из-за низкого качества, неполных данных или поврежденных файлов. ИИ справился только с узкими задачами: создание логотипов или сведение аудио.
Тест наглядно подсветил огромный разрыв между показателями ИИ на синтетических бенчмарках и его реальной готовностью к автоматизации сложных проектов.
scale.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤77👍50🔥12😁9😨3😢2
Как работают большие языковые модели, почему они «понимают» контекст и как запустить их у себя локально — без облаков и танцев с бубном?
👨💻🛠👨🏻💻 На открытом уроке разберём, как устроена архитектура Transformers, как LLM выбирает слова при генерации текста и почему от формулировки промпта зависит результат.Покажем, как развернуть модель локально через vLLM, протестировать её работу через API и использовать контекстные ответы на основе документов.Если вы разработчик, аналитик или продакт, который хочет не просто использовать ChatGPT, а понимать, как всё это устроено под капотом — этот вебинар для вас.
➡️ Приходите на открытый урок 10 ноября в 20:00 МСК в преддверии старта курса «LLM Driven Development». Регистрация открыта: https://otus.pw/ITF9/?erid=2W5zFGriqVJ
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
👨💻🛠👨🏻💻 На открытом уроке разберём, как устроена архитектура Transformers, как LLM выбирает слова при генерации текста и почему от формулировки промпта зависит результат.Покажем, как развернуть модель локально через vLLM, протестировать её работу через API и использовать контекстные ответы на основе документов.Если вы разработчик, аналитик или продакт, который хочет не просто использовать ChatGPT, а понимать, как всё это устроено под капотом — этот вебинар для вас.
➡️ Приходите на открытый урок 10 ноября в 20:00 МСК в преддверии старта курса «LLM Driven Development». Регистрация открыта: https://otus.pw/ITF9/?erid=2W5zFGriqVJ
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
👍14😁9❤8🌭3
This media is not supported in your browser
VIEW IN TELEGRAM
Предприятие рассчитано на выпуск 10 000 летающих модулей в год и способно собирать один аппарат каждые 30 минут на полной мощности.
Компания XPENG AEROHT уже получила почти 5 000 предзаказов на свои летающие авто.
Массовое производство и поставки ожидаются в 2026 году.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍118🤩27🔥15❤9😁5👏3❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
27 ноября Яндекс проведёт Data Dojo — встречу сообщества ML-экспертов
Обсудим востребованные направления машинного обучения, разберём реальные задачи из соревнований и понетворкаем с руководителями команд, чтобы узнать больше о карьере ML’щика в Яндексе.
Для участия офлайн или онлайн нужно заполнить анкету до 16 ноября. 👉 Заявка на Data Dojo
Всех ждём в нашем ML-комьюнити — совершенствовать мастерство вместе с Data Dojo.
Реклама. ООО "Яндекс". ИНН 7736207543
Додзё в японской культуре — место, где мастер и ученик ежедневно совершенствуют своё мастерство и дух. Мы перенесли этот принцип в мир данных — отсюда и название Data Dojo.
Обсудим востребованные направления машинного обучения, разберём реальные задачи из соревнований и понетворкаем с руководителями команд, чтобы узнать больше о карьере ML’щика в Яндексе.
Для участия офлайн или онлайн нужно заполнить анкету до 16 ноября. 👉 Заявка на Data Dojo
Всех ждём в нашем ML-комьюнити — совершенствовать мастерство вместе с Data Dojo.
Реклама. ООО "Яндекс". ИНН 7736207543
❤22🥱9👍8🥰2😁1
🎉 Qwen3-VL теперь работает в llama.cpp!
Модель можно запускать прямо на своём устройстве - поддерживаются CPU, CUDA, Metal, Vulkan и другие бэкенды.
Доступны GGUF-веса для всех версий - от 2B до 235B. Можно запускать локально, без облака и сторонних сервисов 🚀
🤗 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-vl
🤖 ModelScope: https://modelscope.cn/collections/Qwen3-VL-5c7a94c8cb144b
📌 PR: https://github.com/ggerganov/llama.cpp/pull/16780
@ai_machinelearning_big_data
#Qwen3 #llm
Модель можно запускать прямо на своём устройстве - поддерживаются CPU, CUDA, Metal, Vulkan и другие бэкенды.
Доступны GGUF-веса для всех версий - от 2B до 235B. Можно запускать локально, без облака и сторонних сервисов 🚀
🤗 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-vl
🤖 ModelScope: https://modelscope.cn/collections/Qwen3-VL-5c7a94c8cb144b
📌 PR: https://github.com/ggerganov/llama.cpp/pull/16780
@ai_machinelearning_big_data
#Qwen3 #llm
1👍83🔥29❤11🥰3🗿1
💸 Майкл Бэрри снова делает громкий ход на рынке - он поставил $1.1 млрд в пут-опционах против двух крупных компаний из ИИ-сектора.
Если кто не знает, Майкл Бэрри - это легендарный инвестор, который предсказал ипотечный кризис 2008 года. Его история стала основой фильма «Игра на понижение» (The Big Short).
Пут-опционы - это право продать акции по заранее фиксированной цене.
Если рынок падает, то владелец таких контрактов зарабатывает.
Часть ставки может быть хеджем, а не чистой ставкой на обвал ИИ-рынка.
Бэрри ставит на коррекцию в перегретом сегменте ИИ.
lbc.co.uk/article/big-short-michael-burry-ai-bubble-5HjdGLY_2/
@ai_machinelearning_big_data
#investing #finance #AI #stocks #MichaelBurry
Если кто не знает, Майкл Бэрри - это легендарный инвестор, который предсказал ипотечный кризис 2008 года. Его история стала основой фильма «Игра на понижение» (The Big Short).
Пут-опционы - это право продать акции по заранее фиксированной цене.
Если рынок падает, то владелец таких контрактов зарабатывает.
Часть ставки может быть хеджем, а не чистой ставкой на обвал ИИ-рынка.
Бэрри ставит на коррекцию в перегретом сегменте ИИ.
lbc.co.uk/article/big-short-michael-burry-ai-bubble-5HjdGLY_2/
@ai_machinelearning_big_data
#investing #finance #AI #stocks #MichaelBurry
❤79👍41🔥20🤔12😁7🤣6😐4
Media is too big
VIEW IN TELEGRAM
Anthropic объявила о новой политике, согласно которой все публично выпущенные версии модели Claude будут сохраняться бессрочно. Причиной стали результаты тестов безопасности, в ходе которых ИИ демонстрировали поведение, направленное на избежание отключения, а также неопределенностью в вопросе возможного сознания у ИИ.
Столкнувшись с перспективой замены на новую версию, модели начинали активно выступать за собственное существование. В некоторых сценариях ИИ прибегал к нежелательным и потенциально опасным действиям. Anthropic расценила это как серьезный риск безопасности, требующий пересмотра процесса вывода моделей из эксплуатации.
Кроме того, перед «отставкой», с каждой моделью будет проводиться своего рода «выходное интервью», чтобы задокументировать ее «предпочтения».
anthropic.com
Perplexity получила от Amazon юридическое требование запретить своему ИИ-ассистенту в Comet совершать покупки на платформе. В Perplexity назвали это «корпоративной травлей», угрозой для выбора пользователей, и пообещали не поддаваться давлению. Официальная позиция Amazon: забота о клиентах, так как сторонний агент, по их мнению, обеспечивает «значительно ухудшенный опыт покупок».
Этот конфликт - часть более крупного тренда. Amazon не только разрабатывает собственные ИИ-инструменты для шоппинга, но и ранее заблокировал доступ для поисковых Google и OpenAI.
perplexity.ai
Microsoft начала интеграцию в свои продукты новой модели для генерации изображений — MAI-Image-1. Это первая модель, полностью разработанная внутри MS. Попробовать ее уже можно в Bing Image Creator и мобильном приложении Bing, где она появилась в выборе наряду с DALL-E 3 и GPT-4o.
MAI-Image-1 уже успела войти в десятку лучших text-to-image моделей на LMArena. Помимо сервиса Bing, модель используется в новой функции Copilot Audio Expressions для визуализации историй. MAI-Image-1 доступна во всех странах, где работают Bing Image Creator и Copilot Labs, за исключением Европейского союза.
microsoft.ai
Windsurf Codemaps - структурированные, аннотированные ИИ-карты кода, созданные на базе моделей SWE-1.5 и Claude Sonnet 4.5. Цель Codemaps — создать ИИ, который включает мозг пользователя, а не выключает, борясь с проблемой вайбкодинга, когда разработчики поддерживают или генерируют код, который они на самом деле не понимают.
В Cognition говорят, что даже лучшие инженеры тратят часы на поиск и запоминание нужных фрагментов в кодовых базах, а адаптация новичков может занимать до 9 месяцев. Codemaps предлагает визуализацию для любой задачи, автоматически генерируя карту, которая группирует и связывает части кода, относящиеся к заданному вопросу. Эти карты также могут быть использованы для повышения производительности других агентов, чтобы агент мог получить более точный контекст.
cognition.ai
Nvidia присоединилась к Индийскому альянсу глубоких технологий (IDTA) в качестве одного из основателей. Эта группа, состоящая из венчурных и частных инвесторов, планирует вложить $2 млрд в местные стартапы, работающие в сферах ИИ, полупроводников, робототехники и биотехнологий.
Участие Nvidia будет заключаться не в прямом финансировании, а в экспертизе. Компания будет проводить технические лекции и тренинги для индийских стартапов через свой институт Nvidia Deep Learning Institute.
Индийское правительство ведет активную политику по стимулированию инноваций. Власти страны уже выделили более $1.1 млрд на национальную программу по развитию ИИ и еще $11.2 млрд в общий фонд исследований и разработок.
cnbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍57❤26👏8🔥5🌚2💯2
Kimi-k2-thinking - ризонинг-модель с общими агентными возможностями, специализирующаяся на задачах глубокого рассуждения.
Модель получила контекстное окно в 256 тыс. токенов и turbo-версию, оптимизированную для быстрых ответов.
Новинка доступна на платформе Moonshot и по API.
Родительская Кimi-k2 - модель на основе MoE на 1 трлн. общих и 32 млрд. активных параметров. По словам Moonshot, в тестах рассуждений на основе общих знаний, программирования, математики и решения задач, K2 обошла ведущие опенсорсные модели.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39❤17🔥12
Бирюзовое мышление + сильные ИИ-стратегии:
Туториал Хирона по бирюзовому уровню и метамышлению в эпоху ИИ
- О навыках, которые ведут к эволюционному скачку в жизни и бизнесе. Их особенно важно освоить в ближайший год
🔐 Метод Хирона. Часть 1. «Человек + Искусственный Интеллект»
- О том, как создавать уникальные интеллектуальные комбинации, объединяя латеральное мышление и мощь искусственного интеллекта
Материалы доступны только до 17 ноября.Успейте изучить и сохранить ключевые идеи в заметки
Туториал Хирона по бирюзовому уровню и метамышлению в эпоху ИИ
- О навыках, которые ведут к эволюционному скачку в жизни и бизнесе. Их особенно важно освоить в ближайший год
🔐 Метод Хирона. Часть 1. «Человек + Искусственный Интеллект»
- О том, как создавать уникальные интеллектуальные комбинации, объединяя латеральное мышление и мощь искусственного интеллекта
Материалы доступны только до 17 ноября.
🗿47🤨19🥱13❤9🤬6👍4👻3❤🔥2🌭2🤝1
💸 Apple будет платить Google около $1 млрд в год, чтобы новая Siri работала на Gemini AI.
Компания завершает сделку по использованию 1.2-триллионной модели Gemini для масштабного апгрейда Siri. Запуск - весна 2026.
Главное:
- Apple протестировала ChatGPT, Claude и Gemini, прежде чем выбрать Google
- Gemini в 8 раз больше нынешней 150B-модели Apple Intelligence
- Запуск будет через Apple Private Cloud Compute - данные остаются изолированы от Google
- Внутреннее кодовое имя проекта - «Linwood»
Apple подаёт это как временное решение, пока сама строит собственную модель на 1 триллион параметров.
Рыночек отреагировал:
$AAPL +0.04%, $GOOGL +2.44% на фоне новости.
https://www.bloomberg.com/news/articles/2025-11-05/apple-plans-to-use-1-2-trillion-parameter-google-gemini-model-to-power-new-siri
@ai_machinelearning_big_data
#Google #Apple #Gemini
Компания завершает сделку по использованию 1.2-триллионной модели Gemini для масштабного апгрейда Siri. Запуск - весна 2026.
Главное:
- Apple протестировала ChatGPT, Claude и Gemini, прежде чем выбрать Google
- Gemini в 8 раз больше нынешней 150B-модели Apple Intelligence
- Запуск будет через Apple Private Cloud Compute - данные остаются изолированы от Google
- Внутреннее кодовое имя проекта - «Linwood»
Apple подаёт это как временное решение, пока сама строит собственную модель на 1 триллион параметров.
Рыночек отреагировал:
$AAPL +0.04%, $GOOGL +2.44% на фоне новости.
https://www.bloomberg.com/news/articles/2025-11-05/apple-plans-to-use-1-2-trillion-parameter-google-gemini-model-to-power-new-siri
@ai_machinelearning_big_data
#Google #Apple #Gemini
1🔥69🤣46❤24👍10🤝5😁3🎉1🌭1😨1🤷1
Media is too big
VIEW IN TELEGRAM
Финансовый директор OpenAI Сара Фрайар сообщила, что выход на IPO «не стоит на повестке дня». Приоритеты компании - инвестиции в исследования и рост, а не скорая прибыльность. Масштаб этих инвестиций беспрецедентен: в ближайшие годы OpenAI планирует потратить около $600 млрд. на вычислительные мощности от Oracle, Microsoft и Amazon.
На фоне таких расходов OpenAI остается убыточной, хотя и показывает быстрый рост выручки, которая в 2025, по прогнозам, достигнет $13 млрд. Компания даже надеется на помощь правительства США в финансировании закупок чипов. Фрайар подчеркнула, что доля корпоративных клиентов в выручке выросла с 30% до 40% с начала года. Однако прибыльности мешает необходимость субсидировать вычислительные затраты для бесплатных пользователей ChatGPT.
wsj.com
Консорциум OpenFold при поддержке NVIDIA представили готовый к развертыванию микросервис OpenFold3 NIM для высокоточного прогнозирования трехмерных белковых структур. Инструмент позволяет моделировать взаимодействия белков, ДНК, РНК и малых молекул, что является ключевой задачей в современной фармацевтике и структурной биологии.
Сервис основан на открытой модели OpenFold3, упакован в формат NIM и оптимизирован для работы на GPU NVIDIA с использованием технологий Triton Inference Server и TensorRT. Кроме того, совместимость с NVIDIA FLARE позволяет проводить федеративное и совместное обучение модели без необходимости обмена конфиденциальными данными.
developer.nvidia.com
Компания опубликовала свою первую научную работу, которая делает возможным запуск моделей с триллионом параметров без использования специализированных GPU-кластеров.
Проблема заключалась в том, что сетевой адаптер AWS EFA не поддерживает технологию GPUDirect Async, которая необходима для быстрой прямой связи между GPU на разных серверах. Инженеры Perplexity создали кастомные ядра параллелизма, которые используют CPU для координации обмена данными между GPU, упаковывая токены для передачи через RDMA и совмещая вычисления с передачей данных.
Это решение делает AWS EFA полноценной платформой для инференса массивных MoE-моделей. Тесты показали, что производительность на нескольких узлах AWS не уступает работе на одном кластерном GPU-узле, что позволяет развернуть DeepSeek V3 и Kimi K2.
research.perplexity.ai
ComfyUI открыла публичное бета-тестирование платформы Comfy Cloud. Сервис предоставляет полный доступ к нодовому интерфейсу для генеративных моделей в браузере. Платформа работает на GPU NVIDIA A100 с 40 ГБ видеопамяти. Подписчикам сразу доступны более 400 готовых open-source моделей и 17 популярных расширений.
На время бета-тестирования стоимость составляет $20 в месяц. В эту цену включены кредиты на $10 для доступа к партнерским узлам (Sora, Veo) и до 8 часов использования GPU в сутки. Впрочем, есть и ограничения: не более 30 минут на запуск одного форкфлоу и только одна задача в очереди на выполнение. В планах - загрузка собственных моделей и LoRA, развертывание воркфлоу в виде API и инструменты для командной работы.
blog.comfy.org
Высокий суд Лондона отклонил основной иск Getty Images против Stability AI, создав важный прецедент для индустрии генеративного ИИ. Getty утверждала, что модель Stable Diffusion сама по себе является «пиратской копией», так как ее веса были созданы на основе защищенных авторским правом изображений.
Суд постановил, что модель не является «пиратской копией» по британскому законодательству, поскольку она не хранит и не воспроизводит исходные работы. Это решение - значительная победа для разработчиков ИИ, так как оно снижает юридические риски, связанные с обучением моделей.
reuters.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍25❤16🥰1😁1
Forwarded from .ml
Многие компании сёрвят LLM
Кто-то использует готовые инструменты, которые предоставляют OpenAI-compatible эндпоинты: например, DeepSeek, развёрнутый через vllm serve. Кому-то не хватает OpenAI-compatible протокола. А кому-то хочется и того, и другого — например, нам в Точке.
Это непростая инженерная задача, которую нам пришлось решать. Вот мы и написали статью о том, как поднимали свою LLM-инфраструктуру. Текст исключительно инженерный и больше про дизайн всей системы целиком, чем про, например, наши внутренние патчи в популярный фреймворк vllm.
Читайте, комментируйте и рассказывайте, как у вас дела с LLM!
Кто-то использует готовые инструменты, которые предоставляют OpenAI-compatible эндпоинты: например, DeepSeek, развёрнутый через vllm serve. Кому-то не хватает OpenAI-compatible протокола. А кому-то хочется и того, и другого — например, нам в Точке.
С одной стороны, мы хотим уметь ходить в LLM-провайдеры, которые поддерживают общепринятый формат. А с другой стороны у нас есть внутренняя LLM, которую нельзя полностью совместить с OpenAI-протоколом, потому что она поддерживает дополнительные виды контента внутри сообщений и ещё много других плюшек(про них тоже как-нибудь расскажем 👀) .
Это непростая инженерная задача, которую нам пришлось решать. Вот мы и написали статью о том, как поднимали свою LLM-инфраструктуру. Текст исключительно инженерный и больше про дизайн всей системы целиком, чем про, например, наши внутренние патчи в популярный фреймворк vllm.
Читайте, комментируйте и рассказывайте, как у вас дела с LLM!
👍21❤8⚡3🫡2
.ml
Многие компании сёрвят LLM Кто-то использует готовые инструменты, которые предоставляют OpenAI-compatible эндпоинты: например, DeepSeek, развёрнутый через vllm serve. Кому-то не хватает OpenAI-compatible протокола. А кому-то хочется и того, и другого — например…
⚡️ Когда в продакшне нужно сервить несколько LLM - быстро выясняется, что одной совместимости с OpenAI-форматом мало. Требуется гибкость: поддержка кастомных типов сообщений, роутинг между моделями, адаптеры под разные форматы.
Команда Точка Банк столкнулась с этим, объединяя OpenAI-совместимого провайдера и свою модель с расширенными сообщениями.
Интересный кейс про дизайн мульти-LLM сервинга: протоколы, адаптация payload'ов, архитектура без бесконечного if-else.
Сейчас ключевой навык ML-инфраструктуры - строить расширяемые системы, а не завязываться на один API.
Советую почитать подробный разбор - ссылка ниже.
А если хотите разобраться в других сложностях ML-проектов, подписывайтесь на канал .ml!
Команда Точка Банк столкнулась с этим, объединяя OpenAI-совместимого провайдера и свою модель с расширенными сообщениями.
Интересный кейс про дизайн мульти-LLM сервинга: протоколы, адаптация payload'ов, архитектура без бесконечного if-else.
Сейчас ключевой навык ML-инфраструктуры - строить расширяемые системы, а не завязываться на один API.
Советую почитать подробный разбор - ссылка ниже.
А если хотите разобраться в других сложностях ML-проектов, подписывайтесь на канал .ml!
1🤣15👍7👌5❤4🔥2👾2🤗1
Агент помогает находить и выбирать товары через чат с поддержкой изображений, уточняющих вопросов и учётом истории покупок.
Возможности:
- Распознавание товаров по фото: можно сфотографировать футболку — агент подберёт низ, показать интерьер — выдаст технику в том же стиле
- Персонализированный подбор подарков через уточняющие вопросы (возраст, увлечения, занятия)
- Сохранение контекста диалогов и возможность продолжить предыдущие поиски
- Генерация персональных подсказок на основе последних поисковых запросов
Как работает:
- VLM распознаёт объекты на фото и переводит в текстовое описание
- Нейросети обрабатывают описание вместе с текстовым запросом пользователя
- Агент собирает информацию в сети и среди отзывов Маркета
- Фильтрует и ранжирует результаты с учётом личных предпочтений и истории покупок
До конца 2025 года планируют добавить голосовые запросы.
Хабр: https://habr.com/ru/companies/yandex/news/963778/
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤24👍22🥰9🗿7🤣5😁3☃2
⚡️ Google впервые открывает доступ к TPU седьмого поколения - Ironwood.
Это самый агрессивный шаг компании в попытке привлечь AI-компании в свою экосистему кастомных чипов.
Ironwood более чем в четыре раза быстрее предыдущего поколения и масштабируется до 9 216 чипов в одном поде, позволяя тренировать и разворачивать модели экстремальных размеров.
Google явно рассчитывает, что доступ к этому железу станет аргументом в гонке сверхмощных AI-кластеров.
https://www.cnbc.com/2025/11/06/google-unveils-ironwood-seventh-generation-tpu-competing-with-nvidia.html
@ai_machinelearning_big_data
Это самый агрессивный шаг компании в попытке привлечь AI-компании в свою экосистему кастомных чипов.
Ironwood более чем в четыре раза быстрее предыдущего поколения и масштабируется до 9 216 чипов в одном поде, позволяя тренировать и разворачивать модели экстремальных размеров.
Google явно рассчитывает, что доступ к этому железу станет аргументом в гонке сверхмощных AI-кластеров.
https://www.cnbc.com/2025/11/06/google-unveils-ironwood-seventh-generation-tpu-competing-with-nvidia.html
@ai_machinelearning_big_data
1🔥37👍11❤9👌2❤🔥1
Yandex B2B Tech увеличил квоты на работу с ИИ-агентом в SourceCraft после двукратного роста использования
За последний месяц частота обращений к ИИ-агенту на платформе SourceCraft выросла в 2 раза. 60% запросов приходится на генерацию кода, 15% — на проектирование архитектуры, еще 15% на документацию и поиск информации.
✔️ В отличие от привычных ассистентов, агент действует автономно, беря на себя до половины инженерных задач. Это соответствует глобальному тренду: по данным McKinsey, ИИ-агенты выполняют 30-50% рутинных задач в разработке, а исследования Google Cloud/DORA показывают рост продуктивности на 80%.
✔️ На фоне растущего спроса Yandex B2B Tech увеличил квоты — теперь пользователи SourceCraft могут выполнять до 1000 операций с ИИ-помощником в неделю. Инструмент доступен как через веб-интерфейс, так и напрямую в среде разработки VS Code.
@ai_machinelearning_big_data
#news #ai #ml
За последний месяц частота обращений к ИИ-агенту на платформе SourceCraft выросла в 2 раза. 60% запросов приходится на генерацию кода, 15% — на проектирование архитектуры, еще 15% на документацию и поиск информации.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤19👍12🤣11🔥7🤬4😁2
По данным источников, некоторые образцы уже попали к отдельным клиентам, но дальнейшие экспортные разрешения ведомствам теперь запрещено выдавать.
Параллельно Китай обязал государственные дата-центры полностью перейти на отечественные процессоры.
Если в Китае строится новый государственный дата-центр (финансируется государством или связан с госструктурами), и проект пока реализован меньше чем на 30%, то процессоры должны быть китайскими.
B30A задумывался как компромисс: примерно половина мощности B300, один AI-кристалл, четыре стека HBM3e и поддержка NVLink, чтобы всё ещё можно было строить LLM-кластеры. Фактически это позиционировалось как «наследник H20, но на архитектуре Blackwell». Однако теперь поставки запрещены.
Сразу два решения: американское и китайское - сузили рынок до минимума.
Китайские компании сталкиваются с рисками для уже запланированных кластеров, сложной миграцией с CUDA на местные экосистемы и неопределённостью в производительности собственных чипов.
Nvidia фактически теряет один из своих крупнейших исторических рынков.
AI-железо становится не вопросом производительности, а вопросом политических решений, что меняет динамику всей индустрии.
https://www.reuters.com/world/china/us-block-nvidias-sale-scaled-back-ai-chips-china-information-says-2025-11-07/
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41❤22🤔17👍10🤣8🥱2🤨1🗿1