⭐ VibeThinker-1.5B - миниатюрная модель, которая показывает SOTA-результаты в задачах рассуждения.
🚀 Производительность: одна из лучших на AIME24/25 и HMMT25 - превосходит DeepSeek R1-0120 по математическим задачам и опережает модели такого же размера в соревновательном программировании.
⚡ Эффективность: всего 1.5B параметров. то есть в 100–600 раз меньше, чем гиганты вроде Kimi K2 и DeepSeek R1.
💰 Стоимость: полный пост-тренинг обошёлся всего в $7.8K, примерно в 30–60 раз дешевле, чем у DeepSeek R1 или MiniMax-M1.
Модель основана на Spectrum-to-Signal Principle (SSP) и MGPO-фреймворке, оптимизирующих процесс рассуждения.
📦 Model: https://huggingface.co/WeiboAI/VibeThinker-1.5B
💻 GitHub: https://github.com/WeiboAI/VibeThinker
📄 Arxiv: https://arxiv.org/abs/2511.06221
@ai_machinelearning_big_data
#AI #LLM #Reasoning #OpenSource #SmallModel
🚀 Производительность: одна из лучших на AIME24/25 и HMMT25 - превосходит DeepSeek R1-0120 по математическим задачам и опережает модели такого же размера в соревновательном программировании.
⚡ Эффективность: всего 1.5B параметров. то есть в 100–600 раз меньше, чем гиганты вроде Kimi K2 и DeepSeek R1.
💰 Стоимость: полный пост-тренинг обошёлся всего в $7.8K, примерно в 30–60 раз дешевле, чем у DeepSeek R1 или MiniMax-M1.
Модель основана на Spectrum-to-Signal Principle (SSP) и MGPO-фреймворке, оптимизирующих процесс рассуждения.
📦 Model: https://huggingface.co/WeiboAI/VibeThinker-1.5B
💻 GitHub: https://github.com/WeiboAI/VibeThinker
📄 Arxiv: https://arxiv.org/abs/2511.06221
@ai_machinelearning_big_data
#AI #LLM #Reasoning #OpenSource #SmallModel
❤45👍24🔥11😁6🤔3🗿1