We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
Scientists have determined how relative air humidity affects the size of hygroscopic salt dust aerosols β a key factor in addressing ventilation challenges in potash mines. With the expansion of mining operations, the issue of fresh air shortages in mines has become critical. Traditional ventilation methods are no longer sufficient, giving way to recirculation and "ventilation on demand" systems. However, their effective operation requires a precise understanding of how salt dust behaves in a humid atmosphere. When rock is fractured, it generates NaCl and KCl aerosols, which absorb moisture, increase in size, and settle. Accurate models are needed to predict their dispersion. Researchers studied the mechanisms of hygroscopic growth, hysteresis, deliquescence, and recrystallization of salt particles. Due to the challenges of conducting experiments in mines, data on oceanic aerosols of the same composition were used. These models were adapted to mine conditions, yielding average values for the hygroscopic growth factor of salt dust. Remarkably, the particle growth dynamics in mines and over the ocean were found to be very similar! To predict changes in aerosol size, Young's model was proposed, which effectively describes the process in log-log coordinates. These findings will help improve dust condition calculations in salt and potash mines, enhancing ventilation systems and miner safety.
For more information, see the article:
π Chernyi K.A., Faynburg G.Z. Evaluation of variation of salt dust hygroscopic aerosol particle size as a function of relative air humidity. Mining Science and Technology (Russia). 2025;10(1):34-44. https://doi.org/10.17073/2500-0632-2024-07-283
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #halite #sylvine #sylvinite #potashmine #saltdust #aerosolparticles #sizedistribution #hygroscopicgrowthfactor #ventilation #safety #atmosphere #dissolution #crystallization #model #humidity #NaCl #KCl #mining #particles #growth #diameter #theory #experiment #research #science #technology #dust #air #water #surface #process #data #analysis #study #results #YoungModel #speleotherapy #minerals #physics #chemistry #engineering #environment #health
π3β‘1β€1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists studied finely ground tailings from the flotation processing of slags at the Sredneuralsky Copper Smelter ("SUMZ technical sands"), which contain zinc (3.3β3.9%) and copper (0.4β0.5%). These wastes can serve both as a source of valuable metals and as a potential environmental hazard. The study examined the material composition of the magnetic fractions of the "technical sands" and evaluated the efficiency of wet magnetic separation for extracting valuable components. Chemical and phase analyses revealed that zinc and copper were distributed relatively evenly across the fractions, with a slight increase in copper in the non-magnetic fraction and zinc in the weakly magnetic fraction. The application of wet magnetic separation under standard conditions proved insufficiently effective, indicating the need for further research to optimize the technology. The results are important for developing new methods of processing copper smelting waste and reducing its environmental impact.
For more information, see the article:
π Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #CopperSmeltingProduction #MineralWaste #CopperSmeltingSlag #FlotationTailings #Recycling #MagneticSeparation #ThermomagneticAnalysis #MagneticFractions #MagneticProperties #Fayalite #Forsterite #Diopside #Magnetite #Sphalerite #Zincite #HeavyMetals #WasteProcessing #NonferrousMetallurgy #EnvironmentalImpact #ResourceRecovery #SlagUtilization #Geochemistry #Mineralogy #SustainableMining #TechnogenicRawMaterials #Copper #Slags #Zinc #Waste #Flotation #Separation #Magnetism #Minerals #Ecology #Processing #Research #Technologies #Utilization #Disposal #Geology
Scientists studied finely ground tailings from the flotation processing of slags at the Sredneuralsky Copper Smelter ("SUMZ technical sands"), which contain zinc (3.3β3.9%) and copper (0.4β0.5%). These wastes can serve both as a source of valuable metals and as a potential environmental hazard. The study examined the material composition of the magnetic fractions of the "technical sands" and evaluated the efficiency of wet magnetic separation for extracting valuable components. Chemical and phase analyses revealed that zinc and copper were distributed relatively evenly across the fractions, with a slight increase in copper in the non-magnetic fraction and zinc in the weakly magnetic fraction. The application of wet magnetic separation under standard conditions proved insufficiently effective, indicating the need for further research to optimize the technology. The results are important for developing new methods of processing copper smelting waste and reducing its environmental impact.
For more information, see the article:
π Kotelnikova Π.L., Zolotova E.S. Material composition of magnetic fractions of copper-smelting slag flotation tailings. Mining Science and Technology (Russia). 2025;10(1):56-66. https://doi.org/10.17073/2500-0632-2023-08-142
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #CopperSmeltingProduction #MineralWaste #CopperSmeltingSlag #FlotationTailings #Recycling #MagneticSeparation #ThermomagneticAnalysis #MagneticFractions #MagneticProperties #Fayalite #Forsterite #Diopside #Magnetite #Sphalerite #Zincite #HeavyMetals #WasteProcessing #NonferrousMetallurgy #EnvironmentalImpact #ResourceRecovery #SlagUtilization #Geochemistry #Mineralogy #SustainableMining #TechnogenicRawMaterials #Copper #Slags #Zinc #Waste #Flotation #Separation #Magnetism #Minerals #Ecology #Processing #Research #Technologies #Utilization #Disposal #Geology
π2π₯1π1π1