We present the articles of the third issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
Using hydrodynamic simulation based on a multicomponent (compositional) model, a comparative analysis of the development of a gas-condensate reservoir by vertical and horizontal wells was carried out, the results of which revealed the advantage of reservoir development by vertical wells compared to horizontal wells in terms of maximum condensate recovery.
For more information, see the article:
π₯ Tomskiy K.O., Ivanova M.S., Nikitin E.D., Rudykh L.A. Application of hydrodynamic simulation on the basis of a composite model to improve the efficiency of gas-condensate reservoir development. Mining Science and Technology (Russia). 2024;9(3):221-230. https://doi.org/10.17073/2500-0632-2023-10-176 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #condensate #field #condensate_recovery #gas #geomechanics #geophysics #oil #well #deposit #modeling
Using hydrodynamic simulation based on a multicomponent (compositional) model, a comparative analysis of the development of a gas-condensate reservoir by vertical and horizontal wells was carried out, the results of which revealed the advantage of reservoir development by vertical wells compared to horizontal wells in terms of maximum condensate recovery.
For more information, see the article:
π₯ Tomskiy K.O., Ivanova M.S., Nikitin E.D., Rudykh L.A. Application of hydrodynamic simulation on the basis of a composite model to improve the efficiency of gas-condensate reservoir development. Mining Science and Technology (Russia). 2024;9(3):221-230. https://doi.org/10.17073/2500-0632-2023-10-176 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #condensate #field #condensate_recovery #gas #geomechanics #geophysics #oil #well #deposit #modeling
π4β€1π₯1π₯°1π1
We present the articles of the third issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
Interesting studies have been conducted in the field of assessing the geotechnical stability of rock masses.
Using the calculated ratings, the rock masses of ore bodies and host sediments were evaluated for stability (classes/categories have been assigned), and the optimal method and parameters of workings support were determined. The geotechnical database accumulated during the research process provides the feasibility of calculating alternative ratings such as MRMR, RMi, GSI, etc., without the use of transient equations.
For more information, see the article:
π₯ Serebryakov E.V., Zaytsev I.A., Potaka A.A. Assessment of rating parameters of the rock mass conditions at Udachny underground mine deep levels. Mining Science and Technology (Russia). 2024;9(3):206-220. https://doi.org/10.17073/2500-0632-2023-12-192 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #televiewer #jointing #stability #supports #geomechanics #mining #working #mine #rock
Interesting studies have been conducted in the field of assessing the geotechnical stability of rock masses.
Using the calculated ratings, the rock masses of ore bodies and host sediments were evaluated for stability (classes/categories have been assigned), and the optimal method and parameters of workings support were determined. The geotechnical database accumulated during the research process provides the feasibility of calculating alternative ratings such as MRMR, RMi, GSI, etc., without the use of transient equations.
For more information, see the article:
π₯ Serebryakov E.V., Zaytsev I.A., Potaka A.A. Assessment of rating parameters of the rock mass conditions at Udachny underground mine deep levels. Mining Science and Technology (Russia). 2024;9(3):206-220. https://doi.org/10.17073/2500-0632-2023-12-192 π₯
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #televiewer #jointing #stability #supports #geomechanics #mining #working #mine #rock
π4β‘1β€1π₯1π1π―1π1
We present the articles of the third issue of scientific journal "Mining Science and Technologyβ (Russia) for 2024:
A systematic approach to evaluating environmental safety in metro operations, based on modelling the development of defects in tunnel structures under the influence of hydrogeological factors, will help organize existing information on potential accidents and develop monitoring methods and measures to minimize risks that compromise the environmental sustainability of underground transport infrastructure.
For more information, see the article:
π Zhukov S.A. Substantiation of environmental safety in metro facility operations considering hydrogeological risks. Mining Science and Technology (Russia). 2024;9(3):283-291. https://doi.org/10.17073/2500-0632-2024-04-259
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #metro #underground #subway #ecology #safety #innovation #risks #geology #transport #hydrogeology #sustainability #accident #monitoring #tunnel #technology #construction #emission #energy #efficiency #concrete #defects #extraction #quicksand #aquifer #borehole #lining #deformation #leaching #tubbing #modeling #geomechanics #waterproofing #disposal #waste
A systematic approach to evaluating environmental safety in metro operations, based on modelling the development of defects in tunnel structures under the influence of hydrogeological factors, will help organize existing information on potential accidents and develop monitoring methods and measures to minimize risks that compromise the environmental sustainability of underground transport infrastructure.
For more information, see the article:
π Zhukov S.A. Substantiation of environmental safety in metro facility operations considering hydrogeological risks. Mining Science and Technology (Russia). 2024;9(3):283-291. https://doi.org/10.17073/2500-0632-2024-04-259
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #metro #underground #subway #ecology #safety #innovation #risks #geology #transport #hydrogeology #sustainability #accident #monitoring #tunnel #technology #construction #emission #energy #efficiency #concrete #defects #extraction #quicksand #aquifer #borehole #lining #deformation #leaching #tubbing #modeling #geomechanics #waterproofing #disposal #waste
π2β€1β‘1π₯1π1π1
How to estimate the modulus of deformation of a block rock masses using discrete element simulations?
The deformation modulus of rock mass is a fundamental parameter in the geomechanics of tunnels, mining, and other geotechnical rock-supported facilities. The mechanical properties of a rock mass, seen as a fractured medium, are determined by the intact rock, the pattern of relative joint-sets, the geometrical arrangement of the joints, and their mechanical properties. Joint sets, acting as planar discontinuities, confer scale and direction-dependent mechanical properties. The critical factor influencing the deformational behavior of a rock mass is the stiffness of its fractures and discontinuities. The present study investigates the anisotropic deformation modulus of blocky rock masses formed by three intersecting joint sets, including two orthogonal sets. This was achieved through discrete element simulations of representative volumes of blocky rock masses. These studies facilitate the estimation of the blocky rock mass deformation modulus in different directions without the need for laboratory and in-situ tests or empirical relationships.
For more information, see the article:
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116-133. https://doi.org/10.17073/2500-0632-2023-08-143
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
The deformation modulus of rock mass is a fundamental parameter in the geomechanics of tunnels, mining, and other geotechnical rock-supported facilities. The mechanical properties of a rock mass, seen as a fractured medium, are determined by the intact rock, the pattern of relative joint-sets, the geometrical arrangement of the joints, and their mechanical properties. Joint sets, acting as planar discontinuities, confer scale and direction-dependent mechanical properties. The critical factor influencing the deformational behavior of a rock mass is the stiffness of its fractures and discontinuities. The present study investigates the anisotropic deformation modulus of blocky rock masses formed by three intersecting joint sets, including two orthogonal sets. This was achieved through discrete element simulations of representative volumes of blocky rock masses. These studies facilitate the estimation of the blocky rock mass deformation modulus in different directions without the need for laboratory and in-situ tests or empirical relationships.
For more information, see the article:
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116-133. https://doi.org/10.17073/2500-0632-2023-08-143
Subscribe to the journal's Telegram channel:
πt.iss.one/MinSciTechπ
#inenglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
mst.misis.ru
Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses | Ahrami | Mining Scienceβ¦
π3β‘1β€1π₯1π1
We present the articles of the first issue of scientific journal "Mining Science and Technologyβ (Russia) for 2025:
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
Scientists investigated a novel method for reinforcing sandy soils using polyurethane compounds. During construction of engineering structures and mineral deposit development, strengthening loose rock formations often becomes necessary, yet conventional polymer reinforcement techniques provide insufficient strength. Experimental studies introduced a two-solution treatment technology: initial mixing of sand with a slow-reacting highly elastic compound followed by addition of 5% rapid-curing single-component resin. Triaxial compression tests demonstrated that this approach creates cured polymer aggregates that bind mineral grains without complete void filling, increasing sand strength by 5-fold. The resulting geomaterial exhibits superior deformation resistance under axial stress, while maintaining strength independence from rapid-curing additives when the resin-to-rock volume ratio exceeds 0.3. The research confirms that the dual-solution method significantly enhances soil stability even with minimal polymer consumption, offering important practical applications for construction and mining operations.
For more information, see the article:
π Shilova T.V., Serdyukov S.V., Drobchik A.N. Experimental research of stress-strain properties of sandy soil when strengthened with polyurethane compounds. Mining Science and Technology (Russia). 2025;10(1):15-24. https://doi.org/10.17073/2500-0632-2024-08-303
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #soil #sand #properties #strength #strengthening #technology #treatment #polyurethane #resin #geomaterial #testing #triaxial #compression #failure #strain #geotech #engineering #construction #polymer #stabilization #research #experiment #materialscience #groundimprovement #geomechanics #durability #elasticity #SEM #microstructure #geotechnical #civilengineering
β€3π1π₯1π1π1
How to determine the deformation modulus and anisotropy in blocky rock masses?
πΉ In a study published in Mining Science and Technology (Russia), the authors investigated the anisotropic behavior of blocky rock masses. They employed the discrete element method to model and analyze the deformation modulus as a function of loading direction, joint properties, and intact rock characteristics.
πΉ Key Findings:
βοΈ The deformation modulus depends on the Joint Roughness Coefficient (JRC) and the Uniaxial Compressive Strength (UCS) of the intact rock.
βοΈ The influence of joint roughness on the deformation modulus is three times greater than that of intact rock strength.
βοΈ The degree of anisotropy in the deformation modulus ranged from 1.6 β€ Rβ β€ 2.5, with an average value of 1.88.
βοΈ During joint sliding failure, the yield strain (0.2β0.4) is independent of the loading angle (ΞΈ) and the orientation of the third joint set (Ξ±).
πΉ Practical Applications:
The results enable the prediction of rock mass behavior without costly field tests, which is crucial for designing tunnels, boreholes, and other geotechnical structures.
Read the full study in Mining Science and Technology (Russia):
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116β133. https://doi.org/10.17073/2500-0632-2023-08-143
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
πΉ In a study published in Mining Science and Technology (Russia), the authors investigated the anisotropic behavior of blocky rock masses. They employed the discrete element method to model and analyze the deformation modulus as a function of loading direction, joint properties, and intact rock characteristics.
πΉ Key Findings:
βοΈ The deformation modulus depends on the Joint Roughness Coefficient (JRC) and the Uniaxial Compressive Strength (UCS) of the intact rock.
βοΈ The influence of joint roughness on the deformation modulus is three times greater than that of intact rock strength.
βοΈ The degree of anisotropy in the deformation modulus ranged from 1.6 β€ Rβ β€ 2.5, with an average value of 1.88.
βοΈ During joint sliding failure, the yield strain (0.2β0.4) is independent of the loading angle (ΞΈ) and the orientation of the third joint set (Ξ±).
πΉ Practical Applications:
The results enable the prediction of rock mass behavior without costly field tests, which is crucial for designing tunnels, boreholes, and other geotechnical structures.
Read the full study in Mining Science and Technology (Russia):
π Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024;9(2):116β133. https://doi.org/10.17073/2500-0632-2023-08-143
π Subscribe to our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #anisotropy #deformation #modulus #mass #rocks #loading #fracture #stiffness #strength #shear #resistance #stress #displacement #sliding #quartz #modeling #coefficient #index #blocks #deformations #material #surface #structure #boundary #experiment #geomechanics #JRC #UCS #GSI #simulation
π3β€1π₯1π1π1
π₯ Coming soon: new issue of "Mining Science and Technology" Journal!
π Expert analysis, innovations, and practical case studies β coming soon!"
This issue features:
π Talgamer B. L., Meshkov I. A., Murzin N. V., Roslavtseva Yu. G. Justification of the optimal width of a front bank;
π Sekerina D. D., Saitgaleev M. M., Senchina N. P., et al. Role of strike-slips and graben-rifts in controlling oil and gas reservoirs in deep horizons of the Russko-Chaselsky Ridge (West Siberian Province);
π Boyarko G. Y., Bolsunovskaya L. M. Mineral resource base of Russiaβs cobalt: current state and development prospects;
π Indrupskiy I. M., Sukhinina E. A., Alekseeva Yu. V. Analysis of the mechanism of cyclic geomechanical treatment to increase well productivity in carbonate reservoirs;
π Rastanina N. K., Golubev D. A., Perfiliev A. V., et al. Assessment of the elemental status of the young population in Solnechny, Khabarovsk krai, as part of mining environmental monitoring;
π Ovchinnikov N. P. Reducing mine water contamination at the local drainage facility of a kimberlite mine;
π Yurak V. V., Ignatyeva M. N., Komarova O. G. Economic incentive instruments for the development of technogenic deposits.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #Issue #MiningTech #Extraction #Mineralogy #Geoecology #SeismicSurvey #Geomechanics #Modeling #StrategicResources #Cobalt #OreDeposits #Ecology #Pollution #WaterTreatment #LandReclamation #WestSiberia #KhabarovskKrai #RussianScience #MiningEconomics #PPP
π Expert analysis, innovations, and practical case studies β coming soon!"
This issue features:
π Talgamer B. L., Meshkov I. A., Murzin N. V., Roslavtseva Yu. G. Justification of the optimal width of a front bank;
π Sekerina D. D., Saitgaleev M. M., Senchina N. P., et al. Role of strike-slips and graben-rifts in controlling oil and gas reservoirs in deep horizons of the Russko-Chaselsky Ridge (West Siberian Province);
π Boyarko G. Y., Bolsunovskaya L. M. Mineral resource base of Russiaβs cobalt: current state and development prospects;
π Indrupskiy I. M., Sukhinina E. A., Alekseeva Yu. V. Analysis of the mechanism of cyclic geomechanical treatment to increase well productivity in carbonate reservoirs;
π Rastanina N. K., Golubev D. A., Perfiliev A. V., et al. Assessment of the elemental status of the young population in Solnechny, Khabarovsk krai, as part of mining environmental monitoring;
π Ovchinnikov N. P. Reducing mine water contamination at the local drainage facility of a kimberlite mine;
π Yurak V. V., Ignatyeva M. N., Komarova O. G. Economic incentive instruments for the development of technogenic deposits.
π The issue will be released in the coming days!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #Issue #MiningTech #Extraction #Mineralogy #Geoecology #SeismicSurvey #Geomechanics #Modeling #StrategicResources #Cobalt #OreDeposits #Ecology #Pollution #WaterTreatment #LandReclamation #WestSiberia #KhabarovskKrai #RussianScience #MiningEconomics #PPP
π3β€1π1π1π―1
Issue No. 2 (2025) of "Mining Science and Technology" has been published!
New issue now available: https://mst.misis.ru/jour/issue/view/43/showToc
In this issue:
1οΈβ£ Talgamer B.L., Meshkov I.A., Murzin N.V., Roslavtseva Yu.G. Justification of the optimal width of a front bank. Mining Science and Technology (Russia). 2025;10(2):99-108. https://doi.org/10.17073/2500-0632-2024-11-332
Full article
2οΈβ£ Sekerina D.D., Saitgaleev M.M., Senchina N.P., et al. Role of strike-slips and graben-rifts in controlling oil and gas reservoirs in deep horizons of the Russko-Chaselsky Ridge (West Siberian Province). Mining Science and Technology (Russia). 2025;10(2):109-117. https://doi.org/10.17073/2500-0632-2025-02-399
Full article
3οΈβ£ Boyarko G.Yu., Bolsunovskaya L.M. Mineral resource base of Russiaβs cobalt: current state and development prospects. Mining Science and Technology (Russia). 2025;10(2):118-147. https://doi.org/10.17073/2500-0632-2025-02-368
Full article
4οΈβ£ Indrupskiy I.M., Sukhinina E.A., Alekseeva Yu.V. Analysis of the mechanism of cyclic geomechanical treatment to increase well productivity in carbonate reservoirs. Mining Science and Technology (Russia). 2025;10(2):148-160. https://doi.org/10.17073/10.17073/2500-0632-2024-08-300
Full article
5οΈβ£ Rastanina N.K., Golubev D.A., Perfiliev A.V., et al. Assessment of the elemental status of the young population in Solnechny, Khabarovsk krai, as part of mining environmental monitoring. Mining Science and Technology (Russia). 2025;10(2):161-168. https://doi.org/10.17073/2500-0632-2024-11-338
Full article
6οΈβ£ Ovchinnikov N.P. Reducing mine water contamination at the local drainage facility of a kimberlite mine. Mining Science and Technology (Russia). 2025;10(2):169-179. https://doi.org/10.17073/2500-0632-2024-07-274
Full article
7οΈβ£ Yurak V.V., Ignatyeva M.N., Komarova O.G. Economic incentive instruments for the development of technogenic deposits. Mining Science and Technology (Russia). 2025;10(2):180-200. https://doi.org/10.17073/2500-0632-2024-09-255
Full article
π All articles are open access!
Subscribe to our Telegram channel:
π t.iss.one/MinSciTech π
#InEnglish #MST #Issue #MiningTech #Extraction #Mineralogy #Geoecology #SeismicSurvey #Geomechanics #Modeling #StrategicResources #Cobalt #OreDeposits #Ecology #Pollution #WaterTreatment #LandReclamation #WestSiberia #KhabarovskKrai #RussianScience #MiningEconomics #PPP
Please open Telegram to view this post
VIEW IN TELEGRAM
π4β€2π₯1π₯°1π1π1
How to Assess Rock Mass Stability at Deep Mine Levels?
Geomechanical rating classifications are key tools for designing underground mining operations. A new study presents a detailed assessment of rock mass conditions at deep levels of the Udachny mine using RMR and Q systems.
πΉ Key Findings from the Study:
β’ RMR: Range of 32β62 at Q = 1, median values:
o kimberlites of the Zapadny Ore Body (ZOB) β Class III stability;
o kimberlites of the Vostochny Ore Body (VOB) β Class IV;
o host rocks β Class II (average RMR = 54).
β’ Q-Index: Logarithmic range of 0.18β105.6, median values:
o VOB β Class D (poor condition);
o ZOB β Class C (fair condition);
o Host rocks β Class B (Q ~ 4β10).
β’ Rock Strength (UCS):
o kimberlites: 2.15β119.48 MPa (variability due to heterogeneous composition)
o host sediments: 28.14β71.73 MPa (average: 41.05 MPa)
β’ Jointing:
o host rocks β Class I (monolithic, >2 m spacing);
o ZOB β Class III (0.5β1 m spacing);
o VOB β Class IV (0.1β0.5 m spacing).
πΉ Practical Recommendations:
β’ for permanent workings: rockbolting (2 m length, 1β4 m spacing) with 5β6 cm shotcrete;
β’ for excavation junctions: reinforced support (2.5 m rockbolts, 9β12 cm shotcrete);
β’ moderate correlation between RMR and Q due to differing parameter sensitivities (e.g., RMR ignores rockbursts, Q omits strength).
The study highlights the need for integrated approaches: ratings require continuous updates as mining progresses.
π Read the full paper:
Serebryakov E.V., Zaytsev I.A., Potaka A.A. Assessment of rating parameters of the rock mass conditions at Udachny underground mine deep levels. Mining Science and Technology (Russia). 2024;9(3):206-220. https://doi.org/10.17073/2500-0632-2023-12-192
π Follow our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #RatingClassification #RMR #Q #UdachnayaKimberlitePipe #Televiewer #Jointing #RockMassStability #Support #Geomechanics #RockProperties #Drilling #CoreLogging #Rockbolts #Shotcrete #Depth #Mapping #Stress #Modeling
Geomechanical rating classifications are key tools for designing underground mining operations. A new study presents a detailed assessment of rock mass conditions at deep levels of the Udachny mine using RMR and Q systems.
πΉ Key Findings from the Study:
β’ RMR: Range of 32β62 at Q = 1, median values:
o kimberlites of the Zapadny Ore Body (ZOB) β Class III stability;
o kimberlites of the Vostochny Ore Body (VOB) β Class IV;
o host rocks β Class II (average RMR = 54).
β’ Q-Index: Logarithmic range of 0.18β105.6, median values:
o VOB β Class D (poor condition);
o ZOB β Class C (fair condition);
o Host rocks β Class B (Q ~ 4β10).
β’ Rock Strength (UCS):
o kimberlites: 2.15β119.48 MPa (variability due to heterogeneous composition)
o host sediments: 28.14β71.73 MPa (average: 41.05 MPa)
β’ Jointing:
o host rocks β Class I (monolithic, >2 m spacing);
o ZOB β Class III (0.5β1 m spacing);
o VOB β Class IV (0.1β0.5 m spacing).
πΉ Practical Recommendations:
β’ for permanent workings: rockbolting (2 m length, 1β4 m spacing) with 5β6 cm shotcrete;
β’ for excavation junctions: reinforced support (2.5 m rockbolts, 9β12 cm shotcrete);
β’ moderate correlation between RMR and Q due to differing parameter sensitivities (e.g., RMR ignores rockbursts, Q omits strength).
The study highlights the need for integrated approaches: ratings require continuous updates as mining progresses.
π Read the full paper:
Serebryakov E.V., Zaytsev I.A., Potaka A.A. Assessment of rating parameters of the rock mass conditions at Udachny underground mine deep levels. Mining Science and Technology (Russia). 2024;9(3):206-220. https://doi.org/10.17073/2500-0632-2023-12-192
π Follow our Telegram channel: t.iss.one/MinSciTech
#InEnglish #MST #RatingClassification #RMR #Q #UdachnayaKimberlitePipe #Televiewer #Jointing #RockMassStability #Support #Geomechanics #RockProperties #Drilling #CoreLogging #Rockbolts #Shotcrete #Depth #Mapping #Stress #Modeling
β€1π1π₯1π1π―1π«‘1