Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
🦋 Эффект бабочки или Эффект домино или цепная реакция

💡 Вопрос для физиков:
Вполне очевидно, что самая маленькая «кость» обладает очень маленькой потенциальной энергией. Она не может совершить практически никакой работы. Но самая большая «кость» домино обладает энергией, которой может быть достаточно для забивания гвоздя в доску. Как же так получается, что выполняя незначительную работу по толчку маленькой «кости» в конце на выходе у нас выполняется во много раз бОльшая работа? Откуда берется энергия? Закон сохранения не работает? Или всё-таки работает? Напишите свои мысли в комментариях.

#задачи #физика #опыты #видеоуроки #научные_фильмы #механика #теория_хаоса #теория_колебаний

💡 Physics.Math.Code
👍56🔥16🤔63🤨3🤩2
📙 Элементы нелинейной динамики от порядка к хаосу [2006] Васин В. В., Ряшко Л. Б.

💾 Скачать книгу

Хаотическими могут быть и простые системы без дифференциальных уравнений. Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений. Ещё один пример — это модель Рикера, которая также описывает динамику населения.

Клеточный автомат — это набор клеток, образующих некоторую периодическую решётку с заданными правилами перехода. Клеточный автомат является дискретной динамической системой, поведение которой полностью определяется в терминах локальных зависимостей. Эволюция даже простых дискретных систем, таких как клеточные автоматы, может сильно зависеть от начальных условий. Эта тема подробно рассмотрена в работах Стивена Вольфрама.

Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора, которую В. И. Арнольд продемонстрировал в 1960 году с использованием образа кошки.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений. Теорема Пуанкаре — Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Трёхмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям и поэтому представляют собой стабильные решения.

#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math

💡 Physics.Math.Code // @physics_lib
👍49🔥12❤‍🔥6😍21
Элементы_нелинейной_динамики_от_порядка_к_хаосу_2006_Васин,_Ряшко.djvu
3 MB
📙 Элементы нелинейной динамики от порядка к хаосу [2006] Васин В. В., Ряшко Л. Б.

В пособии излагаются элементы теории хаотического поведения простейших дискретных и непрерывных динамических систем и обсуждаются основные понятия фрактальной геометрии. Для студентов физико-математических и технических специальностей вузов.

Теория хаоса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос (динамический хаос, детерминированный хаос). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса.

Примерами подобных систем являются атмосфера, турбулентные потоки, некоторые виды аритмий сердца, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса — область исследований, связывающая математику и физику. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math

💡 Physics.Math.Code // @physics_lib
👍50🔥9❤‍🔥3211
Barnsley fern.gif
19.1 MB
🌿 Папоротник Барнсли — это фрактал, названный в честь британского математика Майкла Барнсли, который впервые описал его в своей книге Фракталы повсюду. Папоротник является одним из основных примеров самоподобных множеств, т. е. это математически сгенерированный узор, который может быть воспроизведен при любом увеличении или уменьшении. Как и треугольник Серпинского, папоротник Барнсли показывает, как графически красивые структуры могут быть построены на основе повторяющегося использования математических формул с помощью компьютеров.

Хотя папоротник Барнсли теоретически можно нарисовать вручную с помощью ручки и миллиметровой бумаги, количество необходимых итераций исчисляется десятками тысяч, что делает использование компьютера практически обязательным. Множество различных компьютерных моделей папоротника Барнсли пользуются популярностью у современных математиков. Пока математика правильно запрограммирована с использованием матрицы констант Барнсли, будет получаться одна и та же форма папоротника. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы

💡 Physics.Math.Code // @physics_lib
👍78❤‍🔥1212🔥7😍2
fern.gif
19.1 MB
🌿 Папоротник Барнсли — это фрактал, названный в честь британского математика Майкла Барнсли, который впервые описал его в своей книге Фракталы повсюду. Папоротник является одним из основных примеров самоподобных множеств, т. е. это математически сгенерированный узор, который может быть воспроизведен при любом увеличении или уменьшении. Как и треугольник Серпинского, папоротник Барнсли показывает, как графически красивые структуры могут быть построены на основе повторяющегося использования математических формул с помощью компьютеров.

Хотя папоротник Барнсли теоретически можно нарисовать вручную с помощью ручки и миллиметровой бумаги, количество необходимых итераций исчисляется десятками тысяч, что делает использование компьютера практически обязательным. Множество различных компьютерных моделей папоротника Барнсли пользуются популярностью у современных математиков. Пока математика правильно запрограммирована с использованием матрицы констант Барнсли, будет получаться одна и та же форма папоротника. #нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы

💡 Physics.Math.Code // @physics_lib
👍115🔥2210❤‍🔥10🤷‍♀3😍3🗿2😎21
Media is too big
VIEW IN TELEGRAM
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
Страна: США, PBS Nova
Режиссер: Michael Schwarz, Bill Jersey / Михаэль Шварц, Билл Джерси

Возможно вы не знаете этого, но фракталы, подобно воздуху которым вы дышите, всегда находятся рядом с нами. Их нерегулярные повторяющиеся формы обнаруживаются в плывущих облаках, ветвях деревьев, форме кочанов капусты брокколи, скалистых горных пиках, даже в сердечном ритме. В этом фильме NOVA отправляет своего зрителя в захватывающее приключение вместе с группой безумных математиков, задавшихся целью найти законы, управляющие геометрией фракталов.
Столетиями фрактало-подобные формы считались находящимися за пределами математического понимания. Сегодня математики наконец-то начали наносить на карту эту неизведанную страну. Эта потрясающая находка дала нам более глубокое понимание природы и позволила раздвинуть границы доступного для наших научных, медицинских и художественных возможностей, от понимания экологии тропических лесов до изобретения новых покроев модной одежды. Этот фильм рассказывает о дизайнерах одежды, специалистах по спецэффектам, физиках и исследователях, которым удалось добиться успеха благодаря использованию фрактальной геометрии.

#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы #science

💡 Physics.Math.Code // @physics_lib
👍50🔥128😍4
Media is too big
VIEW IN TELEGRAM
🌀 10 фракталов, которые стоит увидеть

0:00 — Ковёр Серпинского
0:16 — Дерево Пифагора
0:32 — Дерево Пифагора (версия 2)
0:46 — Красивый фрактал из окружностей
1:10 — Кривая дракона
1:30 — Папоротник Барнсли
1:47 — Вопрос из игры «Что? Где? Когда?»
2:00 — Снежинка Коха
2:10 — Треугольник Серпинсого
2:23 — Множество Кантора
2:40 — Кривая Гильберта
2:50 — Множество Мандельброта
3:15 — Фрактал на основе центроида


Фрактал (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев.

▪️ В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
▪️ Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.
▪️ Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
▪️ Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
▪️ Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]

#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы

💡 Physics.Math.Code // @physics_lib
👍88🔥2315❤‍🔥3🤨3🗿3🤔2🤩2