Physics.Math.Code
143K subscribers
5.21K photos
2.13K videos
5.81K files
4.49K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️Задачка для наших физиков. Три вопроса для тех, кто хочет проверить своё понимание электродинамики 🧲:

1. Почему проволока вращается?
2. Почему она не останавливается в стабильном положении, в котором просто отталкивается (или притягивается) к магниту?
3. Что будет, если добавить еще один такой же магнит, но положить его на батарейку противоположным полюсом?

#задачи #физика #электродинамика #магнетизм #опыты

💡 Physics.Math.Code // @physics_lib
👍60175🙈2🔥1
Media is too big
VIEW IN TELEGRAM
🔥 Физика огня: плазма, неравновесность и хемилюминесценция

Привычное пламя — не раскалённый газ в термодинамическом равновесии. Это сложная низкотемпературная плазма, находящаяся в сильнонеравновесном состоянии.

▪️ 1. Четвёртое агрегатное состояние в вашей горелке Бунзена.
Пламя — это частично ионизированная плазма. Высокая температура приводит к образованию свободных электронов и ионов (CO⁺, H₃O⁺, e⁻). Это доказывается отклонением пламени слабым магнитным полем — классический признак плазменной природы. Однако степень ионизации ( ~10⁻⁸ ) ничтожна по сравнению с солнечной короной.

▪️ 2. Свечение — это не тепловое излучение.
Основной видимый свет пламени (сине-голубая зона) — не следствие чернотельного излучения сажи. Это хемилюминесценция: фотоны рождаются непосредственно в экзотермических химических реакциях.
Например, возбуждение радикала C₂* (диуглерод) и его последующая радиационная релаксация: CH + C₂H₂ → C₂* + CH₃ → C₂ + CH₃ + hν (синий свет, ~430-474 нм). Жёлтое свечение — это уже тепловое излучение раскалённых частиц сажи (уголь) с температурой ~1200-1500 К.

▪️ 3. Неравновесность как ключевой параметр.
В пламени нарушено условие термодинамического равновесия: температура электронов, ионов и нейтральных молекул может существенно различаться. Электронная температура (T_e) часто значительно превышает температуру тяжёлых частиц (T_i, T_n). Это делает неприменимыми стандартные соотношения Саха и классическую термодинамику для его полного описания.

▪️ 4. Гравитационная зависимость и форма пламени.
На Земле форма пламени определяется конвекцией (подъём горячих продуктов сгорания) и диффузией. В условиях микрогравитации (МКС) пламя становится сферическим, так как исчезает архимедова сила. Горение переходит в диффузионный режим, что кардинально меняет его динамику и температурный профиль.

Таким образом, пламя — это не просто «горячий газ», а открытая диссипативная система, демонстрирующая сложное взаимодействие химической кинетики, гидродинамики, физики плазмы и квантовых переходов. #физика #плазма #горение #термодинамика #химическая_кинетика #physics #опыты #science #наука

🔥 Труба Рубенса

💦 Вода VS Пламя🔥

🕯Синхронизация и интересный опыт со свечками

🔥 Огонь и горение в космосе 💫

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥45👍1614❤‍🔥3😭21
Светящаяся тайна: радиоактивное наследие советской эпохи в камере Вильсона

Речь идет о старых советских компасах, часах и других приборах (особенно военных и авиационных), циферблаты которых светились в темноте. Это свечение было не просто краской. Это была радиолюминесцентная краска на основе радия-226 (Ra-226). Того самого радия, который открыли Мария и Пьер Кюри.

Радий-226 — мощный альфа-излучатель. Его частицы бомбардировали люминофор в краске, заставляя его светиться ровным зеленым светом без подзарядки от солнца. Это было практично и надежно, но имело обратную сторону: радий распадается на радон, а сама краска со временем может трескаться и пылить, создавая потенциальную опасность при вдыхании. Но настоящую магию этого скрытого излучения можно увидеть только с помощью специального прибора — камеры Вильсона.

Камера Вильсона — это простой, но гениальный детектор частиц. В ней создается перенасыщенный пар, и когда заряженная частица (как альфа-частица от радия) пролетает через него, она оставляет за собой след из капелек, как самолет в небе.

На этом видео старый советский компас поместили в камеру Вильсона. И то, что невидимо для наших глаз, внезапно ожило! Компас буквально расцвел белыми треками — это и есть видимые следы альфа-частиц, которые испускают атомы радия из своей "безобидной" на вид светящейся краски. Для коллекционера такой предмет, находящийся в неповрежденном состоянии и снаружи, как правило, не представляет серьезной сиюминутной угрозы. Главная опасность — в вдыхании или проглатывании частичек отслоившейся краски. Но это лишний повод обращаться с такими артефактами аккуратно и хранить их в проветриваемом помещении. Наука — это инструмент, который позволяет увидеть невидимое и напомнить о сложном наследии технологического прогресса. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика

📕 Радиоактивность [2013] Алиев Р.А., Калмыков С.Н.

☢️ Атом: энергия мира [2024]

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3711👍10🤔4💯2🤩1
👩‍💻 Всем программистам посвящается!

Вот 17 авторских обучающих IT каналов по самым востребованным областям программирования:

Выбирай своё направление:

👩‍💻 Python — t.iss.one/python_ready
🤔 InfoSec & Хакинг — t.iss.one/hacking_ready
🖥 SQL & Базы Данных — t.iss.one/sql_ready
🤖 Нейросетиt.iss.one/neuro_ready
👩‍💻 Linux — t.iss.one/linux_ready
🖼️ DevOpst.iss.one/devops_ready
👩‍💻 Bash & Shell — t.iss.one/bash_ready
🖥 Data Sciencet.iss.one/data_ready
👩‍💻 C/C++ — https://t.iss.one/cpp_ready
👩‍💻 C# & Unity — t.iss.one/csharp_ready
👩‍💻 Java — t.iss.one/java_ready
👩‍💻 IT Новости — t.iss.one/it_ready
🐞 QA-тестирование t.iss.one/qa_ready
📖 IT Книги — t.iss.one/books_ready
👩‍💻 Frontend — t.iss.one/frontend_ready
📱 JavaScript — t.iss.one/javascript_ready
👩‍💻 Backend — t.iss.one/backend_ready
📱 GitHub & Git — t.iss.one/github_ready
🖥 Design — t.iss.one/design_ready

📌 Гайды, шпаргалки, задачи, ресурсы и фишки для каждого языка программирования!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2116👍12🙈62
This media is not supported in your browser
VIEW IN TELEGRAM
Физика карбидных ламп 🔦

Прежде чем фары автомобилей и фары велосипедов питались от электричества, по темным дорогам двигались огни, рожденные химической реакцией. Давайте заглянем в прошлое и разберемся, как работали карбидные лампы и насколько они были опасны. Устройство лампы было гениально простым и основывалось на интенсивной химической реакции.

1. Реакция: В нижний резервуар закладывали карбид кальция (CaC₂) — сероватое твердое вещество. В верхний заливали воду.

2. Химия: При открытии клапана вода по каплям поступала на карбид. Происходила бурная реакция: CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂ — Проще говоря, карбид кальция + вода = ацетилен (C₂H₂) + гашеная известь.

3. Физика горения: Полученный горючий газ ацетилен по трубке подавался в горелку (сопло). Его поджигали спичкой. Ключевой элемент — форма сопла (жиклера). Она создавала узкую струю газа, которая, вырываясь, смешивалась с кислородом воздуха. Эта смесь горела ровным и ярким белым пламенем.

☀️ Факт из физики: Яркость пламени ацетилена одна из самых высоких среди углеводородных газов. Это связано с большим количеством несгоревших раскаленных частиц углерода в пламени (как и в керосиновой лампе), что делает его свет очень эффективным для освещения.

Однако, при всех плюсах, карбидные лампы были источником сразу нескольких рисков:

1. Взрывоопасность. Ацетилен образует с воздухом взрывоопасную смесь в очень широком диапазоне концентраций (от 2.5% до 81%). Малейшая утечка из резервуара или неправильное гашение лампы могли привести к хлопку или серьезному взрыву.

2. Отравление угарным газом (CO). При недостатке кислорода (например, в закрытом гараже или палатке) ацетилен сгорает не полностью, выделяя смертельно опасный угарный газ. Этот газ не имеет запаха и цвета, что делало его особенно коварным.

3. Химические ожоги. Побочный продукт реакции — гашеная известь (Ca(OH)₂) — является едкой щелочью. При чистке лампы можно было легко получить химический ожог кожи или глаз.

4. Пожароопасность. Опрокидывание лампы могло привести к возгоранию.

Карбидные фары были настолько эффективны, что использовались на первых автомобилях (например, на Ford Model T) и даже на маяках. Их свет был мощным и пробивал туман лучше ранних электрических фар. Карбидная лампа — это великолепный пример простого и эффективного применения химии и физики. Она освещала путь первом автомобилистам, шахтерам и спелеологам. Но за ее ярким светом всегда скрывалась тень реальной опасности, что в конечном итоге и привело к ее замене на более безопасные и удобные электрические источники света.

🔍 Факт из оптики: источник света (пламя горелки) практически всегда располагался в фокусе вогнутого зеркала-рефлектора. Вогнутое зеркало, особенно имеющее параболическую форму, обладает важным свойством: все лучи света, исходящие из его фокуса, после отражения от зеркала идут параллельным пучком. Пламя ацетиленовой горелки светит во все стороны. Если его поместить в фокус такого зеркала, "задняя" и "боковая" часть светового потока не теряется, а собирается зеркалом и превращается в мощный, направленный луч, который может освещать дорогу на десятки метров вперед. Это резко повышало КПД фары. Именно параболическая форма (а не сферическая) идеально справляется с формированием параллельного пучка без искажений. Сферическое зеркало страдает аберрацией, но его было проще изготовить, поэтому в более дешевых моделях использовали его. #физика #химия #техника #термодинамика #оптика #physics #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4322🔥11🤩2❤‍🔥1🤯1😱1
Конденсационная камера — принцип действия и источник альфа-частиц
😖 Конденсационная камера — радиационный фон

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
27👍8🔥71🥰1🤩1🙈1