Математика Дата саентиста
13.4K subscribers
392 photos
127 videos
37 files
338 links
Download Telegram
Подборка 18 книг по математике.zip
188.8 MB
📚 18 книг по математике. Подборка книг для подготовки к экзаменам

📙 Математика: Пособие для поступающих в вузы [2002] В. П. Моденов
📙 Сборник задач по математике с анализом решений [1959] Моденов П. С.
📙 Сборник конкурсных задач по математике с анализом ошибок [1950] Моденов П.С.
📙 Сборник задач по дифференциальной геометрии [1949] Моденов П.С.
📙 Геометрические преобразования [1961] Моденов П.С., Пархоменко А.С.
📙 Задачи с параметрами. Координатно-параметрический метод: учебное пособие [2007] Моденов, В. П.
📙 Аналитическая геометрия [1967] Моденов П.С.
📙 Сборник задач по аналитической геометрии [1964] Бахвалов С.В., Моденов П.С., Пархоменко А.С.
📙 Сборник задач по специальному курсу элементарной математики [1957] Моденов П.С.
📙 Геометрические преобразования [1961] Моденов П.С., Пархоменко А.С.
📙 Пособие по математике для подготовительных курсов МГУ [1967] Александров Б.И., Моденов П.С.
📙 Теория поверхностей в векторном изложении [1932] Брюшгенс С.С., Моденов П.С.
📙 Сборник задач по специальному курсу элементарной математики [1960] Моденов П.С.
📙 Курс высшей математики - учебник для пед. ин-тов [1948] П. С. Моденов, Г. А. Невяжский
📙 Экзаменационные задачи по математике с анализом их решения [1969] Моденов П.С.
#подборка_книг #математика #math #maths #алгебра #геометрия
🔥115👍2🤗1
Философия математики

1. Субъективность математики
2. Наука без чисел
3. Как доказать недоказуемость?
4. Материализм и эмпириокритицизм
5. Не доказано! - Как доказать недоказуемость? Часть 2
6. Совпадение? Не думаю!
7. Суперсимметричная квантовая механика
8. Аргумент предсказательной силы
9. Куда заведет симметрия?
10. О реальности физических терминов


#video #math

https://www.youtube.com/watch?v=AiEjZRAaCQk&list=PLnbH8YQPwKbm_k8n45VhYZ5wdbB0cuZ_J&ab_channel=LightCone

data_math
👍7🔥41😁1
🎲 Комбинаторная математика

1. Правила комбинаторики. Комбинаторная математика.
2. Генерация комбинаторных объектов. Комбинаторная математика.
3. Классы P, N и NPC. Комбинаторная математика.
4. Основные определения и свойства графов. Комбинаторная математика.
5. Ориентированные графы. Комбинаторная математика
6. Эйлеровы и гамильтоновы графы. Комбинаторная математика
7. Раскраска графов. Комбинаторная математика
8. Триангуляция Делона и диаграмма Вороного. Комбинаторная математика
9. Минимальное остовное дерево. Комбинаторная математика
10. Количество остовных деревьев. Комбинаторная математика

#video #math

https://www.youtube.com/watch?v=EEIpjY0v7k4&list=PLAyGZSpiecFosLLmmYczCpNPFQHCAkV8A

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍134🔥4
Комбинаторная математика

1. Правила комбинаторики. Комбинаторная математика.
2. Генерация комбинаторных объектов. Комбинаторная математика.
3. Классы P, N и NPC. Комбинаторная математика.
4. Основные определения и свойства графов. Комбинаторная математика.
5. Ориентированные графы. Комбинаторная математика
6. Эйлеровы и гамильтоновы графы. Комбинаторная математика
7. Раскраска графов. Комбинаторная математика
8. Триангуляция Делона и диаграмма Вороного. Комбинаторная математика
9. Минимальное остовное дерево. Комбинаторная математика
10. Количество остовных деревьев. Комбинаторная математика


#video #math

https://www.youtube.com/watch?v=EEIpjY0v7k4&list=PLAyGZSpiecFosLLmmYczCpNPFQHCAkV8A&ab_channel=%D0%98%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D1%85%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BCI%D0%99%D0%BE%D1%88%D0%BA%D0%B0%D1%80-%D0%9E%D0%BB%D0%B0
👍12🔥43👏1
Математика

1. Самые большие числа
2. Сделал генетический алгоритм | симуляция ЭВОЛЮЦИИ
3. ИИ учится ходить
4. Симуляция естественного отбора
5. Что будет, если взять корень из отрицательного числа? | Фракталы
6. Пишем свой движок 3D-графики
7. Сделал симуляцию черной дыры в 3D
8. Что больше бесконечности?
9. Как выглядит самая сложная задача математики? Фрактал Коллатца

#video #math

https://www.youtube.com/watch?v=qsbQki6Ikfo&list=PLyc_E1fmJGpIqWsdgX-j5RxIX1M225UlD&ab_channel=Onigiri

@data_math
11👍3🔥3❤‍🔥1
Дискретная математика

1. Высказывание и логические связки
2. Минимизация логических функций
3. Доказательство
4. Множества. Операции над множествами
5. Бинарные отношения
6. Функция
7. Иерархия. Операция с О
8. Временные оценки сложности арифметических операций
9. Решение рекуррентных соотношений
10. Линейные однородные рекуррентные соотношения

#video #math

https://www.youtube.com/watch?v=IzFV_dqPPh0&list=PLAyGZSpiecFrbfQxm_YiKNmkXwW7k0i_m&ab_channel=%D0%98%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D1%85%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BCI%D0%99%D0%BE%D1%88%D0%BA%D0%B0%D1%80-%D0%9E%D0%BB%D0%B0
👍92🔥1
Математика. Объяснение

1. Все операции в системах счисления в одном видео
2. Равновесие Неша. Объяснение математического смысла
3. Деление на ноль. Объяснение математического смысла
4. Число Фибоначчи = 1.618. Объяснение математического смысла
золотого сечения
5. Зачем нужен ВЕКТОР. Объяснение математического смысла
6. Зачем нужны системы счисление. Объяснение смысла
7. Число e - 2,718. Объяснение математического смысла
8. Сумма всех чисел равна - 1/12. Объяснение математически, чему равна бесконечность
9. Число Пи-здесь. Объяснение математического смысла


#video #math

https://www.youtube.com/watch?v=w4Bl7NnMMMo&list=PLX-4e1QvVfSba2buT2lx_DaGgzCY3dZgy&ab_channel=SciencePub

@data_math
👍154🔥3💩1
Аналитическая геометрия. Основные задачи на прямую

1. Условия совпадения и параллельности двух прямых
2. Поиск точки пересечения двух прямых
3. Задача определения формул перехода к новой декартовой системе координат
4. Решение задачи определения точки пересечения данной прямой с заданной кривой
5. Определение угла между прямыми Условия перпендикулярности двух прямых
6. Определение расстояния от точки до прямой
7. Определение уравнения прямой проходящей через две заданные точки
8. Уравнение прямой проходящей через точку и перпендикулярную к заданной прямой
9. Уравнение прямой проходящей через точку и составляющую с заданной прямой некоторый угол
10. Уравнения прямой проходящей через точку пересечения прямых и имеющей заданное направление

#video #math

youtube.com/watch?v=cai0puwTfGE&list=PL7CmqnO_Qydi2qsDzrmZnbDqdlMg0u4ZK

@data_math
6🔥4👍2
Комбинаторная математика

1. Правила комбинаторики. Комбинаторная математика.
2. Генерация комбинаторных объектов. Комбинаторная математика.
3. Классы P, N и NPC. Комбинаторная математика.
4. Основные определения и свойства графов. Комбинаторная математика.
5. Ориентированные графы. Комбинаторная математика
6. Эйлеровы и гамильтоновы графы. Комбинаторная математика
7. Раскраска графов. Комбинаторная математика
8. Триангуляция Делона и диаграмма Вороного. Комбинаторная математика
9. Минимальное остовное дерево. Комбинаторная математика
10. Количество остовных деревьев. Комбинаторная математика

#video #math

https://www.youtube.com/watch?v=EEIpjY0v7k4&list=PLAyGZSpiecFosLLmmYczCpNPFQHCAkV8A&ab_channel=%D0%98%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D1%85%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BCI%D0%99%D0%BE%D1%88%D0%BA%D0%B0%D1%80-%D0%9E%D0%BB%D0%B0

@data_math
👍125🔥4
Теория множеств - для программиста

1 (продвинутый) ➤ ОСНОВЫ
2. ПРАКТИКА
3. ПРАКТИКА - 2
4. ПРАКТИКА - 3
5. ЗАДАЧИ С ЗАКОВЫРОЧКОЙ -4
6. ПРАКТИКА - 5
7. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРИМЕР
8. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА
9. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА
10. МЕТОД ДВУХ ВКЛЮЧЕНИЙ - ПРАКТИКА

#video #math

https://www.youtube.com/watch?v=xRjm-PqklFk&list=PLe-iIMbo5JOJlDz3wWfMF40A8Id8Nll0b&ab_channel=%D0%9F%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5Python
👍72🔥2
Цикл лекций о великих математиках

1. Обзор жизни и исследований Леонарда Эйлера
2. Что таĸое Эĸспонента? Значение в 0
3. Что таĸое Эĸспонента? Значение в 1
4. Экспонента по Ньютону. Чему равно е
5. Еще одна Экспонента
6. Формула Эйлера
7. Быстрое вычисление числа π по Эйлеру
8. Путь Эйлера
9. Топология
10. Приложение 1: “Футбольный мяч”

#video #math

https://www.youtube.com/watch?v=Nd5VJAR3ZPw&list=PLmu_y3-DV2_k-Tnu_L-uZ8FMbTWGce-ED&ab_channel=%D0%A6%D0%98%D0%A2%D0%9C%D0%AD%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82%D0%B0

@data_math
🔥10👍65👎1
Вероятность и статистика

1. Переменные и метрики
2. Генераторы и Монте-Карло
3. ЗБЧ и ЦПТ
4. Монте-Карло: практика
5. Проверка гипотез и p-value
6. А/Б тесты: пропорции
7. А/Б тесты: непрерывные переменные
8. Множественная проверка гипотез
9. Ревью курса + вопросы и ответы

#video #math

https://www.youtube.com/watch?v=S3WAjnBC6CI&list=PLQJ7ptkRY-xbHLLI66KdscKp_FJt0FsIi
14👍11🔥61
Forwarded from Machinelearning
⚡️Qwen выпустили Qwen2-Math, размером 1.5B, 7B и 72B.

> 84 (72B), 75 (7B), 69,4 (1,5B) баллов на MATH
> > 72B SoTA на MMLU STEM
> Лицензия Apache 2.0 для версии 1.5B и 7B, 72B выпущена под лицензией Qianwen
> Основана на той же архитектуре, что и Qwen 2

Флагманская модель Qwen2-Math-72B-Instruct превосходит проприетарные модели, включая GPT-4o и Claude 3.5, в выполнении задач, связанных с математикой 🔥

> Интеграция с Transformers! 🤗

Hf
Github
Tech report
Scope

@ai_machinelearning_big_data

#opensource #Qwen #math
👍105🔥2
Математика

1. Самые большие числа
2. Сделал генетический алгоритм | симуляция ЭВОЛЮЦИИ
3. ИИ учится ходить
4. Симуляция естественного отбора
5. Что будет, если взять корень из отрицательного числа? | Фракталы
6. Пишем свой движок 3D-графики
7. Сделал симуляцию черной дыры в 3D
8. Что больше бесконечности?
9. Как выглядит самая сложная задача математики? Фрактал Коллатца

#video #math

https://www.youtube.com/watch?v=qsbQki6Ikfo&list=PLyc_E1fmJGpIqWsdgX-j5RxIX1M225UlD&ab_channel=Onigiri

@data_math
👍94🔥3👎1
Forwarded from Machinelearning
🌟DeepSeek-Prover: Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

DeepSeek-Prover-V1.5 - набор из языковых моделей для доказательства теорем в Lean 4.
"V1.5" означает обновление DeepSeek-Prover-V1 с некоторыми ключевыми нововведениями.

Во-первых, процесс обучения: предварительная подготовка на базе DeepSeekMath, затем контрольная работа с набором данных, включающим логические комментарии на естественном языке и код Lean 4. Это устраняет разрыв между рассуждениями на естественном языке и формальным доказательством теоремы. В набор данных также входит информация о промежуточном тактическом состоянии, которая помогает модели эффективно использовать обратную связь с компилятором.

Во-вторых, проводится обучение с подкреплением, используя алгоритм GRPO для изучения обратной связи с помощником по проверке. Тут выравнивается соответствие модели формальным спецификациям системы проверки.

В-третьих, RMaxTS, варианте поиска в дереве по методу Монте-Карло. Он присваивает встроенные вознаграждения на основе изучения тактического пространства состояний, побуждая модель генерировать различные пути доказательства. Это приводит к более обширному исследованию пространства доказательств.

В результате получился набор моделей с абсолютной точностью генерации в 46,3% на тестовом наборе miniF2F. Этот показатель лучше, чем у GPT-4 и моделей RL, специализирующихся на доказательстве теорем.

Набор DeepSeek-Prover:

🟠DeepSeek-Prover-V1.5 Base. Идеально подходит для первоначального изучения и понимания возможностей модели и основ для формальных математических рассуждений, но требует дальнейшего обучения для оптимальной работы;
🟠DeepSeek-Prover-V1.5 SFT. Модель для задач, требующих умеренных навыков доказательства теорем за счет рассуждений на естественном языке и информации о тактическом состоянии.
🟠DeepSeek-Prover-V1.5 RL. Рекомендуется для решений, требующих высочайшей точности и производительности при формальном доказательстве теорем. К SFT-версии добавлены дополнительная оптимизация на основе Proof Assistant Feedback и обучение с подкреплением.

▶️Установка и запуск:
# Clone the repository:
git clone --recurse-submodules [email protected]:deepseek-ai/DeepSeek-Prover-V1.5.git
cd DeepSeek-Prover-V1.5

# Install dependencies:
pip install -r requirements.txt

# Build Mathlib4:
cd mathlib4
lake build

# Run paper experiments:
python -m prover.launch --config=configs/RMaxTS.py --log_dir=logs/RMaxTS_results



📌Лицензирование кода репозитория: MIT license

📌Лицензирование моделей: DEEPSEEK License


🟡Набор моделей
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🖥Github [ Stars: 53 | Issues: 0 | Forks: 1]


@ai_machinelearning_big_data

#AI #LLM #Math #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥21
Forwarded from Machinelearning
🌟 OpenMathInstruct-2: математический датасет и набор моделей от NVIDIA.

OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.

Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.

Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:

🟢формат решения имеет значение, причем чрезмерно подробные решения негативно сказываются на производительности модели;

🟢данные, сгенерированные сильной моделью-учителем, превосходят по качеству данные, полученные от более слабой модели;

🟢процесс обучения устойчив к наличию до 20% решений низкого качества;

🟢разнообразие вопросов имеет решающее значение для масштабирования данных.

Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера lm-sys и ручной проверки на поиск дубликатов с тестовыми наборами данных.

OpenMathInstruct-2 показал высокую эффективность при обучении LLM.

Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.

Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).

▶️ Модели, дообученные на этом датасете:

🟠OpenMath2-Llama3.1-70B, в формате Nemo, квантованные версии GGUF (от 3-bit до 8-bit);

🟠OpenMath2-Llama3.1-8B, в формате Nemo, квантованные версии GGUF (от 2-bit до 8-bit).


📌Лицензирование датасета : CC-BY-4.0 License.

📌Лицензирование моделей: Llama 3.1 Community License.


🟡Набор моделей
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
Forwarded from Machinelearning
📌Как линейная алгебра может помочь при разработке web-приложения.

Интересная и познавательная статья разработчика Ивана Шубина о том, как он использовал матрицы для создания интерактивного редактора диаграмм Schemio.

Изначально, редактор позволял создавать простые фигуры и манипулировать ими, но с введением иерархии объектов возникла необходимость в сложных преобразованиях координат. Матрицы стали ключом к решению этой проблемы, позволяя эффективно управлять перемещением, вращением и масштабированием объектов.

Для преобразования глобальных и локальных координат между собой использовались матричные преобразования. Умножение матриц дало возможность комбинировать преобразования, а инверсия матрицы помогает переводить координаты из глобальных в локальные.

Иван подробно описывает, как матрицы помогают управлять поворотом и масштабированием объектов относительно опорной точки и как они используются при монтировании и демонтировании объектов, чтобы избежать нежелательных коллизий.

Таким образом, матричная математика стала решением для расширения возможностей редакторе Schemio.

🔜 Читать полную версию статьи

#Math #LinearAlgebra #Webdev
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102🔥2
Кодирование сигналов

1. Код Грея
2. Применение битов четности
3. Код Хемминга
4. Синхронизация с помощью избыточного кода
5. Скремблирование
6. Кодирование битов при последовательной передаче
7. Битстаффинг
8. Передатчик Манчестер II
9. Приемник кода Манчестер II
10. Двунаправленная передача импульсов по одной линии

#video #math

https://www.youtube.com/watch?v=C4cU4gldP5c&list=PL1VvMJF0dnhrcJZBhrAr8OWZKkCtbIBGQ&ab_channel=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0%D0%B4%D0%BB%D1%8F%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%81%D1%82%D0%BE%D0%B2

@data_math
10👍7👀1
Media is too big
VIEW IN TELEGRAM
🎲 Вероятностные модели и функции потерь. Машинное обучение полный курс. Урок 8

- Видео
- Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 /
- Урок6/ Урок7
- Colab
-Полный курс

#ml #math #mlmath #probability #машинноеобучение
🔥7👍32