Математика Дата саентиста
13.4K subscribers
392 photos
127 videos
37 files
338 links
Download Telegram
Forwarded from Machinelearning
🌟 OpenMathInstruct-2: математический датасет и набор моделей от NVIDIA.

OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.

Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.

Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:

🟢формат решения имеет значение, причем чрезмерно подробные решения негативно сказываются на производительности модели;

🟢данные, сгенерированные сильной моделью-учителем, превосходят по качеству данные, полученные от более слабой модели;

🟢процесс обучения устойчив к наличию до 20% решений низкого качества;

🟢разнообразие вопросов имеет решающее значение для масштабирования данных.

Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера lm-sys и ручной проверки на поиск дубликатов с тестовыми наборами данных.

OpenMathInstruct-2 показал высокую эффективность при обучении LLM.

Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.

Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).

▶️ Модели, дообученные на этом датасете:

🟠OpenMath2-Llama3.1-70B, в формате Nemo, квантованные версии GGUF (от 3-bit до 8-bit);

🟠OpenMath2-Llama3.1-8B, в формате Nemo, квантованные версии GGUF (от 2-bit до 8-bit).


📌Лицензирование датасета : CC-BY-4.0 License.

📌Лицензирование моделей: Llama 3.1 Community License.


🟡Набор моделей
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
Forwarded from Machinelearning
🌟 SegVLAD: метод визуального распознавания мест.

SegVLAD - метод для решения задач визуального распознавания мест (VPR) в условиях значительных изменений ракурса. SegVLAD использует сегментацию изображений, разделяя их на значимые объекты ("вещи"). Вместо того, чтобы кодировать все изображение целиком, как это делают традиционные методы VPR, SegVLAD кодирует и ищет соответствия на уровне отдельных сегментов.

Основа архитектуры SegVLAD - набор перекрывающихся подграфов сегментов SuperSegments. Подграфы создаются путем расширения окрестности каждого сегмента, учитывая информацию о соседних сегментах, полученную с помощью триангуляции Делоне.

Для каждого SuperSegment вычисляется дескриптор с использованием метода VLAD (Vector of Locally Aggregated Descriptors).

VLAD агрегирует локальные дескрипторы пикселей, полученные с помощью предварительно обученного DINOv2, который способен извлекать высокоуровневые признаки, инвариантные к различным условиям съемки.

SegVLAD обучался на наборах данных, включающих как уличные, так и внутренние среды: Pitts30k, AmsterTime, Mapillary Street Level Sequences (MSLS), SF-XL, Revisted Oxford5K, Revisited Paris6k, Baidu Mall, 17Places, InsideOut и VPAir.

Тесты SegVLAD показали, что метод превосходит современные VPR, особенно на датасетах с большими изменениями точки обзора. SegVLAD является универсальным и может быть использован с различными методами сегментации изображений и кодировщиками признаков.

Проект программной реализации метода SegVLAD - Revisit Anything.

▶️Локальный запуск с набором данных 17 places из датасета AnyLock (~ 32GB) и моделями SAM+DINO:

⚠️ Перед запуском подготовьте данные датасета согласно структуре и укажите путь к данным в place_rec_global_config.py/

# Шаг1 - выбор метода (DINO/SAM):
python place_rec_SAM_DINO.py --dataset <> --method DINO/SAM

# Шаг2 - генерация VLAD cluster center (опционально):
python vlad_c_centers_pt_gen.py --dataset <>

# Шаг 3 - извлечение PCA:
place_rec_global_any_dataset_pca_extraction.py --dataset <> --experiment <> --vocab-vlad <domain/map>

# Шаг 4 - запуск SegVLAD:
place_rec_main.py --dataset <> --experiment <> --vocab-vlad <domain/map> --save_results <True/False>


📌Лицензирование : BSD-3-Clause license.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #SAM #DINO #VPR #SegVLAD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥32
Forwarded from Machinelearning
🌟 The Well: Масштабная коллекция физических симуляций для машинного обучения.

The Well – коллекция датасетов для машинного обучения, содержащая 15 ТБ данных численного моделирования различных физических систем. Коллекция состоит из 16 наборов данных из областей: биологии, гидродинамики, акустики, магнитогидродинамики, внегалактических субстанций и взрывы сверхновых.

Данные представлены в унифицированном формате HDF5, организованном в соответствии с общей спецификацией. Они сгенерированы на равномерных сетках и дискретизированы с постоянным временным шагом.

Файлы HDF5 содержат все доступные переменные состояния и пространственно-изменяющиеся коэффициенты в виде массивов NumPy в формате одинарной точности fp32. Доступны скалярные, векторные и тензорные поля, учитывая их различные свойства преобразования.

Каждый файл данных случайным образом разделен на обучающую, тестовую и валидационную выборки в соотношении 8:1:1. Детальное описание каждого набора данных представлено в таблицах, где указаны координатная система, разрешение снимков, количество временных шагов в траектории, общее количество траекторий в наборе данных, размер набора данных, время выполнения симуляций и используемое оборудование.

The Well предоставляет класс the_well для Python, который позволяет загружать и использовать данные в процессе обучения моделей. Для удобства большинство наборов размещены на Hugging Face, что позволяет получать данные напрямую через интернет.

▶️ Установка и пример использования c HF:

# Create new venv
python -m venv path/to/env
source path/to/env/activate/bin

# Instal from repo
git clone https://github.com/PolymathicAI/the_well
cd the_well
pip install .

# Streaming from Hugging Face
from the_well.data import WellDataset
from torch.utils.data import DataLoader

trainset = WellDataset(
well_base_path="hf://datasets/polymathic-ai/",
well_dataset_name="active_matter",
well_split_name="train",
)
train_loader = DataLoader(trainset)

for batch in train_loader:
...


📌Лицензирование кода : BSD-3-Clause License.

📌Лицензирование датасетов : CC-BY-4.0 License.


🟡Страница проекта
🟡Коллекция на HF
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Dataset #TheWell
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍3