Анализ данных (Data analysis)
46.2K subscribers
2.27K photos
263 videos
1 file
2.03K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — бесплатно и без ограничений для всех.

💬 Работает супер быстро прямо в чате.

🚀 Так же доступен Agent Mode с расширенными возможностями.

От простых вопросов до сложных задач — всё в одном окне : https://manus.im/

@ai_machinelearning_big_data

#news #ai #ml #manus
9👍2🔥1
Forwarded from Machinelearning
📌Реверс-инженерия GPT-2 методом трассировки цепей Cross-Layer Transcoders.

Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.

Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.

Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.


Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.

Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.


▶️ Главный эксперимент:

Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.

Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).

▶️ Что нашли:

🟢Признаки «больше, чем»: Feature 425104 (слой 8) активируется на больших числах в хронологии (даты, войны). Но его теплокарта продвигает выходы >60, независимо от входа, а вот Feature 461858 работает только для YY=6–14 и продвигает ZZ=10–30.

Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.

🟢Сюрпризы: Feature 399423 — вообще не про числа. Он кодирует четность и контраст: активируется на «and» в «pros and cons», а в задаче продвигает четные ZZ при нечетных YY. Абстракция уровня «противоположность» — такого в прошлых работах не видели.

🟢Странности: Feature 402486 вообще саботирует задачу: продвигает малые числа. Или Feature 349410 — работает только для YY=11, хотя ее max-активации показывают числа до 30.

▶️ Выводы:

CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.

Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.

В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.

🔜 Читать полную статью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍3🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Генерация изображений ChatGPT теперь доступна в WhatsApp.

OpenAI запустила функцию создания изображений по текстовым запросам в WhatsApp через бота 1-800-ChatGPT. Ранее возможность генерировать картинки была доступна только в мобильном приложении и на сайте сервиса.

Владельцы платных аккаунтов ChatGPT получают дополнительные преимущества. Привязав подписку к WhatsApp, они увеличивают лимиты на генерацию. Данных о геодоступности интеграции и объема, на который увеличиваются лимиты, OpenAI не предоставила.
OpenAI в сети Х

✔️ Google Gemini 2.5: Pro и Flash доступны всем, Flash-Lite в превью.

Google официально представила стабильные версии Gemini 2.5 Pro и Flash, обещая улучшенную производительность при оптимальных затратах и скорости. Эти модели уже готовы к использованию в промышленных приложениях.

Параллельно анонсирована пробная версия Flash-Lite — самая дешевая и быстрая из линейки. Она показывает лучшие результаты, чем Gemini 2.0, в программировании, математике и обработке данных. Модель поддерживает работу с инструментами (поиск, исполнение кода) и обрабатывает до 1 млн. токенов за раз.

Доступ к Flash-Lite открыт через AI Studio и Vertex AI, а Pro и Flash в мобильном приложении Gemini.
blog.google

✔️ Adobe Firefly стала доступна на мобильных устройствах.

Adobe выпустила мобильное приложение Firefly для iOS и Android. Инструмент объединяет собственные модели Adobe и сторонние решения от OpenAI, Google (Imagen 3/4, Veo 2/3), Flux и других. Пользователи получают доступ к функциям Generative Fill, текстового генератора видео и улучшения изображений.

Приложения получили синхронизацию с Creative Cloud, а для использования некоторых ИИ-опций требуются генеративные кредиты. Подписчики Creative Cloud могут использовать Firefly бесплатно, но отдельные функции доступны по специальной подписке.

Обновленная платформа Firefly Boards, напоминающая FigJam, теперь поддерживает редактирование и создание видео на основе моделей Google и Adobe.
macrumors.com

✔️ Cursor добавил новый тарифный план Ultra за $200 в месяц.

Ultra, новый тариф, с объемом вычислений в 20 раз больше, чем у Pro стал возможен благодаря партнерству с OpenAI, Anthropic, Google и xAI. Эти компании обеспечили доступ к мощным вычислительным ресурсам.

Параллельно обновлен Pro-тариф: теперь он предлагает неограниченное использование с ограничениями по скорости, а лимиты на вызовы инструментов полностью сняты. Сохранение прежнего лимита в 500 запросов в день можно выбрать вручную.
cursor.com

✔️ Groq появился в Hugging Face Hub как поставщик инференса.

Groq стал доступен для запуска моделей на Hugging Face Hub, платформа добавила компанию в число своих поставщиков вычислений. Groq предлагает рекордно низкие задержки благодаря собственным процессорам обработки языка, которые заменяют традиционные GPU. Поддерживаемые модели включают свежие открытые версии Llama 4 и Qwen QWQ-32B, полный список можно посмотреть тут.

Интеграция работает через веб-интерфейс и клиентский SDK, а оплата возможна двумя способами: через API-ключ Groq или через Hugging Face без наценок. Для бесплатных аккаунтов доступен ограниченный объем инференса, а PRO-пользователи получают $2 ежемесячного кредита.
huggingface.co

✔️ Reddit запустил рекламные инструмента на основе ИИ.

Основной фишкой стал «Reddit Insights powered by Community Intelligence», он в реальном времени отслеживает тренды и помогает тестирует идеи для кампаний. Еще один инструмент, «Conversation Summary Add-ons», позволяет брендам добавлять под рекламу позитивные комментарии пользователей о продукте.

Reddit, похоже, угадывает с трендом: автоматизация и аналитика становятся ключевыми в условиях жесткой конкуренции за внимание.
reuters.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍5❤‍🔥1🔥1
Forwarded from Machinelearning
🌟 GRESO: ускорение RL-обучения языковых моделей умным отбором данных.

GRESO - это новый алгоритм для эффективного обучения с подкреплением больших языковых моделей, который сокращает вычислительные затраты на 40–60% без потери качества. Его суть в предварительной фильтрации «бесполезных» промптов, тех, что не дают модели обучаться, еще до дорогостоящей стадии rollout (генерации ответов модели).

В основе GRESO — вероятностная модель, предсказывающая, стоит ли прогонять промпт через LLM.

Алгоритм анализирует историю вознаграждений (reward dynamics) за прошлые эпохи обучения: если промпт много раз подряд давал идентичные награды на всех сгенерированных ответах (их называют zero-variance), он, скорее всего, бесполезен и сейчас.

GRESO не блокирует их жестко, он вычисляет вероятность пропуска , опираясь на число идущих подряд «пустых» прогонов и базовую вероятность «исследования». Это позволяет иногда перепроверять сложные промпты, на тот случай, если вдруг модель «доучилась» и теперь они полезны.

Базовая вероятность автоматически настраивается в реальном времени: если доля бесполезных промптов выше целевого значения (например, 25%), GRESO ее снижает, экономя ресурсы; если ниже — повышает, добавляя гибкости. Плюс, алгоритм разделяет промпты на легкие и сложные, применяя к ним разную политику исследования (сложные проверяет чаще, так как они перспективнее для обучения сильной модели).

А чтобы не гонять большие батчи ради пары примеров, размер выборки динамически подстраивается под текущие нужды на основе вычисления из недостающих данных, α — текущей доли пустых промптов и запаса надежности.

Хотя GRESO и экономит сотни часов на H100, делая RL-тюнинг доступнее, у него есть нюансы:

🟠он фильтрует только очевидные zero-variance промпты, но не ранжирует остальные по «полезности», иными словами, не отличает средне-сложные задания от крайне ценных. Это можно доработать, добавив оценку информативности.

🟠алгоритм требует мониторинга. Если целевая доля бесполезных промптов задана неверно, эффективность падает.

▶️ На практике потестить GRESO можно используя набор кода из репозитория проекта на Qwen Math 1.5В или Qwen Math 7b, есть несколько подготовленных скриптов файнтюна в train-scripts.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #GRESO
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥3👍2😁1
🧠 Mistral Small 3.2 — обновление модели с рядом улучшений

Вышла новая версия модели — Mistral Small 3.2, небольшой апдейт по сравнению с 3.1, но с акцентом на качество и надёжность:

🎯 Модель лучше понимает инструкции
Теперь модель точнее следует конкретным указаниям и запросам пользователя.

🔁 Меньше повторов и зацикливаний
Исправлены проблемы бесконечных генераций и однотипных ответов — ответы стали разнообразнее и короче.

⚙️ Улучшен формат вызова функций
Function Calling теперь работает стабильнее и проще интегрируется в приложения.

📌 Итог: меньше сбоев, лучше управление, удобнее в реальных задачах.

https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506

#Mistral #ml #ai
👍96🔥6
Forwarded from Machinelearning
🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4🤔2🤨1
✔️ Kimi-Researcher: End-to-End RL для агентных возможностей

Kimi-Researcher — автономный агент от Moonshot AI, способный решать сложные многоэтапные задачи через поиск и рассуждения. В среднем он выполняет 23 шага рассуждений и анализирует более 200 URL за одну задачу. Построен на внутренней версии модели Kimi k-series и обучен полностью через end-to-end reinforcement learning, достигнув Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam.

Ключевые достижения:
• Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam (тест 17 июня 2025)
• 69 % Pass@1 на xbench-DeepSearch (среднее из 4 прогонов)
• Сильные результаты на FRAMES, Seal-0 и SimpleQA

Архитектура и инструменты:
• Параллельный internal search tool для реального времени
• Текстовый браузер для интерактивных веб-задач
• Кодовый тул для автоматического выполнения и тестирования кода

Преимущества end-to-end agentic RL:
• Обучение единой модели планированию, восприятию и использованию инструментов без ручных шаблонов
• Гибкая адаптация к изменяющимся инструментам и динамическим условиям
• Поддержка длинных траекторий (> 50 итераций) благодаря контекст-менеджеру

Подход к обучению:
1. Синтетические задачи с обязательным вызовом инструментов для надёжного усвоения работы с ними
2. Алгоритм REINFORCE с контролем негативных примеров и γ-декэем для стабильности
3. Контекст-менеджмент: сохранение ключевых документов и отбрасывание «мусора»
4. Асинхронные rollout’ы и Turn-level Partial Rollout для ускорения обучения

Инфраструктура Agent RL:
• Полностью асинхронные rollout’ы с Gym-like интерфейсами
• Turn-level Partial Rollout для задач долгой продолжительности
• Надёжный sandbox на Kubernetes с Model Context Protocol (MCP) для связи агента и инструментов

Emerging agentic capacities:
• Итеративное разрешение противоречий через гипотезы и самопроверку
• Ригорозная перекрёстная верификация фактов перед выдачей ответа

Сценарии применения:
• Академические исследования и юридические обзоры
• Извлечение редкой информации и комплаенс
• Клинические обзоры и финансовый анализ

https://moonshotai.github.io/Kimi-Researcher/

#ai #ml #Agent #rl #Kimi

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥3👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Microsoft разработала компактную языковую модель Mu для Windows Settings.

Microsoft представила мини-модель Mu с 330 млн. параметров для локальной работы на NPU в Windows Settings. На чипах Qualcomm модель показывает в 4,7 раза быстрее генерацию токенов, чем аналоги. Mu адаптировали под особенности NPU: настроили размеры слоев, применили квантование весов до 8-16 бит и уменьшили потребление памяти.

Mu уже используется в агенте Settings, который преобразует запросы вроде «увеличь яркость» в системные команды. Модель обучали на 3,6 млн примеров, добавили синтетические данные и шум, чтобы повысить точность. Результат: ответы за 500 мс даже на сложных задачах. При этом Mu в 10 раз меньше Phi-3.5-mini, но сохраняет конкурентную производительность.
blogs.windows.com

✔️ SYNTHETIC-2: децентрализированный проект генерации логических данных.

Prime Intellect запустила SYNTHETIC-2, децентрализованную систему генерации для обучения ИИ. Проект позволяет любым GPU, от бытовых до промышленных, присоединиться к генерации данных. Управляет процессом TOPLOC v2, технология, которая проверяет корректность вычислений через хэширование активаций и распределяет награды за успешные результаты.

Датасет включает более 20 задач: математика, генерация JSON и неформальные задания для разнообразия данных. Верификация работает через сравнение ответов разных моделей (Qwen3, DeepSeek и др.). Все данные доступны на HuggingFace.

Присоединиться может любой желающий, арендовав ресурсы через Prime Intellect или подключив собственные GPU. Цель проекта - ускорить развитие открытой суперинтеллектуальной системы, где контроль распределен, а технологии общедоступны.
primeintellect.ai

✔️ DIY-устройство для превращения снов в фильмы с помощью ИИ.

«The Dream Recorder», открытый DIY-гаджет от компании Modem Works, превращающий воспоминания о снах в короткие фильмы с помощью ИИ. Устройство использует Raspberry Pi, микрофон и экран, а его стоимость сборки составляет около $310. После пробуждения пользователь рассказывает сон, который транскрибируется и отправляется в ChatGPT, а затем в Luma AI для генерации видео. Итоговый ролик сохраняется в цифровой дневник.

Проект сочетает DIY-культуру и доступные технологии, демонстрируя, как ИИ может визуализировать субъективный опыт. Все схемы и исходники доступны на GitHub, включая 3D-модели для печати. Примерная стоимость записи одного сна составляет $0.15, что делает эксперименты с памятью и сознанием доступными. И это не прототип, а рабочее решение, которое можно собрать самостоятельно.
dreamrecorder.ai

✔️ Мини-движок nano-vLLM.

Исследователь Синькай Ю из DeepSeek разработал nano-vLLM, облегченный движок для работы с LLM. Он написан на Python вручную, объемом всего 1,2 тыс. строк кода, и воспроизводит основные функции оригинального vLLM.

nano-vLLM поддерживает кэширование префиксов, тензорный параллелизм, компиляцию с torch.compile и CUDA Graphs. Это позволяет достичь скорости, близкой к vLLM, но без сложных алгоритмов планирования задач или динамического батчинга. Зато разработчики получают четкую архитектуру в одном месте: токенизатор, управление кэшем и механизм выборки токенов. Проект подойдет для исследований, обучения или небольших систем, где важна простота.
github.com

✔️ OpenAI готовит ChatGPT к конкуренции с Google Workspace и Office 365.

По данным источников, OpenAI разрабатывает продвинутые функции для ChatGPT, превращая его в платформу для командной работы. Пользователи смогут группировать чаты, загружать файлы, использовать голосовой ввод и сохранять контекст диалогов. Все это позиционируется как альтернатива офисным пакетам. Мобильное приложение получит поддержку загрузок и переключения моделей на лету.

Этот проект, задуманный в 2024 году, активно развивается сейчас и OpenAI видит в ChatGPT «операционную систему для жизни», интегрируемую в рабочие процессы. Microsoft, поддерживающий стартап, теперь рискует стать конкурентом самому себе, а Google получает нового серьезного оппонента.
theinformation.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍8🔥3
Forwarded from Machinelearning
📌 State of Foundation Models 2025 — краткое изложение отчёта Innovation Endeavors

Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.

🟢 2025 — год, когда генеративный ИИ стал по-настоящему массовым.

Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.

🟠LLM уже обходят людей на сложных тестах.

Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.

Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.


🟠По всем техническим метрикам масштаб моделей растет экспоненциально.

Производительность, интеллект и окна контекста увеличиваются более чем в 10× каждый год. Например, окна контекста выросли примерно с 8 тысяч до миллиона токенов, а стоимость генерации одного токена на крупных моделях упала почти в 1000 раз за пару лет. Средняя «длительность» задачи, которую модель может завершить сама, удваивается примерно каждые 7 месяцев.

🟠 Эксперты резюмируют: «умные модели сначала думают, потом говорят».

Модели рассуждения, обученные через CoT, дают новый путь к масштабированию и требуют активного посттренинга (RL с reward-моделями). Возможно, скоро именно дообучение станет важнее предобучения.

🟠 Экономика фундаментальных моделей запутана.

Крупнейшие игроки генерируют сотни миллионов выручки, но обучение топ-моделей дороже: LLaMA 4 ≳ $300 млн, GPT-4 ≈ $100 млн, а совокупные расходы OpenAI на обучение и данные достигают ~$3 млрд в год. Новая модель устаревает за три недели — конкуренция так высока, что open-source почти сравнялся с закрытыми платформами.

🟠Структура команд меняется под давлением ИИ.

Выяснилось, что функции «узких» специалистов часто уходят к универсалам с ИИ-ассистентам, а профессии уровня "middle management" вымирают.

🟠 MCP становится стандартом интеграции.

Model Context Protocol соединяет модели с почтой, дизайном, чатами и другими сервисами, а «клиентом» всё чаще выступает другой ИИ: крупные CRM и базы данных само-настраиваются через агентов.

🟠 Железо не отстаёт.

В ИИ-облаках важнее продавать «сырые» GPU-часы, чем комплексное ПО; допвремя на GPU обычно выгоднее оптимизаций. NVIDIA остаётся безусловным лидером: отчёт Q1 зафиксировал 10× генерации токенов на инференсе за год. Появилась волна стартапов с трансформер-чипами — теперь переписывать ИИ-ПО под новое железо оправдано: вычислительные затраты многократно превышают зарплаты инженеров.

🟠 Капитал хлынул в ИИ.

Доля венчура выросла с 10% в 2024 до 50+% в 2025. Компании вроде Anthropic показывают $2 млрд годового дохода с двукратным ростом, но их оценивают в 30 годовых выручек, что вызывает опасения перегрева. Некоторые стартапы привлекают инвестиции ещё на этапе идеи, без MVP, усиливая риски "пузыря".

🟠 Осторожнее с трендами:

75 % ИИ-фото-приложений потеряли основную выручку всего за полгода после пика, напоминая, что не каждое модное направление = устойчивый бизнес, тем более когда модели устаревают с космической скоростью.


Полный отчёт
Видео

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍4🔥3
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️Qwen VLo — новый мультимодальный ИИ от Alibaba, который заточен на понимание и генерацию изображений

📌Как работает:
Модель поэтапно строит изображение слева направо и сверху вниз, уточняя детали на каждом шаге. Это делает итоговую картинку качественной, естественной и согласованной.

Например, можно написать запрос:
«Сделай картинку милого кота» — и она появится.
А можно загрузить фото кота и попросить: «Добавь коту шапку» — и модель отредактирует изображение.

🎯 Что умеет Qwen VLo:
Точная генерация: не путает объекты, сохраняет структуру, меняет, например, цвет машины на фото без искажений
Редактирование по команде: «Сделай фото в стиле Ван Гога» или «добавь солнечное небо» — всё выполняется по инструкции
Глубокое понимание: может обрабатывать сложные задачи — выделение объектов, сегментация, редактирование текста и фона
Мультиязычность: понимает запросы на английском, китайском и других языках — просто опишите, что нужно

🧪 Сейчас Qwen VLo доступна в виде превью через Qwen Chat.

👉 Попробовать: https://chat.qwen.ai
👉 Детали: https://qwenlm.github.io/blog/qwen-vlo/

@ai_machinelearning_big_data

#Qwen #Alibaba #ai #genai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍6🔥3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Alibaba Group представила обновленный Qwen-TTS для английского и китайского языков.

Qwen обновила свой синтезатор речи Qwen-TTS, его обучали на миллионах часов аудиозаписей. Новая версия адаптирует интонацию, ритм и эмоции под контекст текста и приближает звучание к человеческому. Добавили 3 китайских диалекта и поддержку 7 двуязычных голосов (Cherry, Ethan, Jada и др.).

Тесты в SeedTTS-Eval показали высокую точность (WER 1.209) и естественность (SIM 1.967). Модель доступна только через API. В будущем обещают новые языки и стили речи.
qwenlm.github.io

✔️ Исследование: как ИИ-поисковики меняют правила видимости веб-контента.

Совместное исследование ERGO Innovation Lab и ECODYNAMICS показало, что ИИ-системы не просто выдают популярные ссылки, они анализируют структуру, читаемость и ясность контента. Это ставит под сомнение традиционные методы SEO в для традиционных сайтов.

Аналитики изучили 33 тыс. запросов и 600 сайтов из области услуг страхования. Результат: LLM оценивают не только ключевые слова, но и логичность подачи информации, удобство навигации и глубину раскрытия темы.

Специалисты советуют пересмотреть стратегии: упростить тексты, структурировать данные и адаптировать контент под агентные системы. Чем раньше компании пересмотрят свои SEO-стратегии, тем выше вероятность оставаться на виду, когда алгоритмы станут сложнее. Полную версию отчета можно почитать по ссылке.
ergo.com

✔️ OpenAI и компания Марка Цукерберга борются за кадры.

Конкуренция за лучших специалистов в сфере ИИ достигла критической точки. После того как компания Цукерберга переманила 4 ключевых сотрудников OpenAI для работы над «суперинтеллектом», глава исследований Марк Чэн призвал команду Сэма Альтмана оставаться верной компании, пообещав пересмотреть зарплаты и улучшить условия.

По данным источников, Цукерберг предлагает бонусы до $100 млн и лично контактирует с потенциальными кандидатами. Внутри OpenAI сотрудники жалуются на перегрузки, многие работают по 80 часов в неделю. В ответ на агрессивный хэдхантинг, Open AI объявила о «перезагрузке» на неделю, при этом напомнив, что из главная цель - развитие ИИ, а не соревнование с конкурентами.
wired.com

✔️ Microsoft создала ИИ-систему для диагностики, превосходящую врачей.

Microsoft разработала ИИ-инструмент MAI-DxO, который в 4 раза эффективнее опытных врачей в решении сложных диагностических задач. Система использует «оркестратор», создавая сеть из 5 ИИ-агентов, выполняющих роли от генератора гипотез до выбора тестов, которые взаимодействуют и «спорят» для принятия решений.

Тестирование на 304 сложных клинических случаях из NEJM показало точность 85,5% при использовании OpenAI o3 — против 20% у людей без доступа к справочникам или коллегам. Технология может быть интегрирована в Copilot и Bing, которые суммарно обрабатывают около 50 млн. медицинских запросов ежедневно.
ft.com

✔️ Роботы-гуманоиды впервые сыграли в футбол без участия людей.

В минувшую субботу, в Пекине прошел первый в Китае турнир по футболу полностью автономных роботов-гуманоидов. Команда университета Циньхуа победила в финале, обыграв соперников из сельскохозяйственного университета со счетом 5:3. Обе команды использовали одинаковое оборудование от Booster Robotics, но разрабатывали собственные алгоритмы для управления зрением, балансом и движениями.

Матч стал испытанием для технологий: роботы падали, теряли равновесие, а иногда их приходилось уносить на носилках - все это помогает тестировать системы управления и безопасности перед массовым внедрением. Организаторы назвали матч "трейлером" предстоящих Всемирных игр роботов в августе, где будут представлены 11 видов спорта.
bloomberg.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥4👍3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Google открыла глобальный доступ к Veo 3 Fast.

Veo 3 Fast - это ускоренная версия модели для создания видео из текста. Она обрабатывает запросы более чем в два раза быстрее Veo 3, но с ограничением по качеству: максимум 720p.

Сервис доступен в 159 странах, включая все страны Европы. Пользователи Gemini Pro получают три генерации в день, а подписчики Ultra — до 125 видео в месяц. Дополнительно, снизили частоту отклонения пользовательских промптов.

Google уже готовит добавление функции Image-to-video, она находится «на финальной стадии».
Josh Woodward (VP Google) в сети X

✔️ Модель Centaur предсказывает поведение человека.

Ученые из Helmholtz Munich создали модель Centaur, способную предсказывать решения людей в любых психологических задачах, от выбора риска до обучения. Команда адаптировала Llama 3.1, обучив ее на данных из 10 млн. решений. По тестам Centaur превзошел специализированные алгоритмы, которые разрабатывали годами. Модель угадывает поведение даже в новых сценариях при изменении контекста задачи или добавления новых опций.

Внутренние процессы Centaur начали напоминать активность человеческого мозга без прямого обучения на нейронных данных. Цифровой «мозг» даже открыл новую стратегию принятия решений.

Исследователи открыли доступ к модели и датасету Psych-101, обещая прорыв в психологии, образовании и дизайне продуктов.
nature.com

✔️ Компания Марка Цукерберга тестирует чат-ботов, которые начнут писать первыми.

Компания разрабатывает функцию для чат-ботов в своем AI Studio: они смогут инициировать диалог с пользователями, если те ранее активно общались с ботом (не менее 5 сообщений за 2 недели). После первого ответного сообщения от пользователя боты продолжат общение, но только в течение 14 дней, и прекратят попытки, если ответа не последует.

Цель функции - удерживать аудиторию, увеличивая вовлеченность, это напрямую связано со стратегией монетизации ИИ-продуктов (прогнозируемый доход $2–3 млрд. в 2025 году). Пилотный тест уже запущен, но детали реализации остаются расплывчатыми.
businessinsider.com

✔️ Крупный бизнес просит ЕС отложить закон о регулировании ИИ.

Более 45 технологических и промышленных гигантов призвали Еврокомиссию перенести сроки вступления в силу закона об искусственном интеллекте на два года. Они утверждают, что текущие требования к мощным ИИ-моделям слишком расплывчаты и угрожают развитию инноваций.

Регулирование должно начаться в августе, инициативу отрытого обращения к ЕК запустили General Catalyst, SAP и Spotify, хотя последние двое не подписали письмо.
bloomberg.com

✔️ CoreWeave запускает первый в отрасли сервер с GPU Nvidia Blackwell Ultra.

Облачный провайдер CoreWeave первым установил серверы Nvidia GB300 NVL72 с новыми GPU Blackwell Ultra. Платформа, собранная Dell, объединяет 72 видеокарты и 36 процессоров Grace, обеспечивает 50-кратный роста производительности при инференсе и 5-кратную энергоэффективность по сравнению с архитектурой Hopper. Инсталляция ориентирована на тяжелые нейросетевые задачи и агентные вычисления.

Система уже доступна клиентам, раннее внедрение может стать козырем провайдера в конкуренции за внимание технической аудитории.
cnbc.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥3👍2
Forwarded from Machinelearning
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍6🔥3
Google DeepMind расширяет линейку своих моделей Gemma

Представлены две новинки:

✔️ T5Gemma — новая жизнь для классической архитектуры encoder-decoder от Google DeepMind

Большинство современных LLM используют архитектуру *decoder-only*, но Google решила напомнить о силе классической схемы *encoder-decoder*, особенно эффективной в задачах вроде перевода, и QA.

Это новая линейка LLM, в которой уже обученные модели Gemma 2 (decoder-only) превращаются в мощные encoder-decoder через метод адаптации. Такой подход даёт сразу два бонуса:
- сохранение знаний из Gemma 2;
- гибкость и эффективность encoder-decoder архитектуры.

Особенности:
- Обновлённая версия Gemma 2 с архитектурой encoder-decoder.
- Отличный баланс между качеством и скоростью инференса (по сравнению с decoder-only).
- Доступны чекпойнты: Small, Base, Large, XL, 2B-2B, 9B-9B, 9B-2B.
- Достигает большей точности, не жертвуя временем инференса.
- Открывает путь к “небалансным” конфигурациям, когда, например, энкодер мощный, а декодер компактный.


✔️ MedGemma — открытые мультимодальные модели для медицины от Google DeepMind


🟡 MedGemma 4B Multimodal
- 64.4% на MedQA — одна из лучших моделей в классе <8B.
- В слепом тесте: 81% отчётов по рентгенам, сгенерированных MedGemma 4B, были признаны квалифицированным рентгенологом достаточно точными для принятия медицинских решений.
- Также показывает SOTA-уровень на задачах медицинской классификации изображений.

🟢 MedGemma 27B (Text + Multimodal)
- 87.7% точности на MedQA — почти как у DeepSeek R1, но в 10 раз дешевле по инференсу.
- Конкурирует с гораздо более крупными моделями на задачах:
- Определение диагноза;
- Интерпретация ЭМК (электронных медкарт);
- Комбинированное понимание текста и изображений.

Открытые модели — можно кастомизировать, дообучать и использовать локально.

🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡MedGemma: https://research.google/blog/medgemma-our-most-capable-open-models-for-health-ai-development/


#GoogleDeepMind #ai #ml #llm #med
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥5👍1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Эмбеддинг-модель Gemini от Google стала общедоступной.

Google объявила о выходе в общий доступ модели для создания текстовых эмбеддингов - Gemini-Embedding-001. Она доступна разработчикам через Gemini API и Vertex AI. С момента своего экспериментального запуска модель стабильно занимает лидирующие позиции в бенчмарке MTEB и поддерживает более 100 языков.

Gemini Embedding использует технику Matryoshka Representation Learning. Она позволяет разработчикам гибко настраивать размерность выходных векторов, чтобы оптимизировать производительность и затраты на хранение. Максимальная длина входных данных составляет 2048 токенов.

Стоимость использования модели : $0.15 за 1 миллион входных токенов. Доступ к ней можно получить через Gemini API, а бесплатно протестировать - в Google AI Studio.
developers.googleblog.com

✔️ Лаборатория суперинтеллекта в компании Марка Цукерберга обсуждает отказ от open-source.

Недавно созданное подразделение по разработке AGI инициировало дискуссию о кардинальном изменении стратегии компании. Ключевая идея - отказаться от развития флагманской open-source модели Behemoth в пользу закрытой архитектуры, по аналогии с OpenAI и Google. Такой шаг стал бы серьезным философским сдвигом для компании, которая годами продвигала открытый код и завоевала признание разработчиков.

Обсуждения пока находятся на ранней стадии и требуют одобрения Марка Цукерберга. Однако сама дискуссия, начатая новой командой под руководством Александра Ванга, указывает на возможный стратегический разворот гиганта соцсетей.
nytimes.com

✔️ В Grok появились анимированные 3D-персонажи.

xAI начала развертывание новой функции «Companions» для чат-бота Grok в приложении для iOS. Обновление добавляет в интерфейс интерактивных трехмерных персонажей, цель которых - сделать общение более персонализированным и выйти за рамки текстовых ответов. На данный момент функция доступна платным подписчикам SuperGrok.

Пользователи могут выбрать одного из двух анимированных аватаров: аниме-девушку Ani или красную панду Bad Rudy. Включить их можно в меню настроек. В компании обещают позже добавить третьего персонажа.
Elon Mask в сети Х

✔️ Топовые немецкие ученые в области Med AI переехали работать в Китай.

Два выдающихся специалиста из Германии, Роланд Эйльс и Ирина Леманн, присоединились к Университету Фудань в Шанхае. Их работа была ключевой в создании атласа клеток поджелудочной железы человека и использовании ИИ для прогнозирования рисков заболеваний.

Эйльс - всемирно известный математик и биолог, руководивший крупными национальными исследовательскими проектами. Леманн - профессор в области эпигенетики, возглавлявшая несколько международных научных конференций. Супруги опубликовали более 1000 научных работ и имеют свыше 100 000 цитирований.

В Университете Фудань они присоединились к Институту интеллектуальной медицины и планируют создать совместную немецко-китайскую ИИ-лабораторию.
scmp.com

✔️ Perplexity будет дообучать модели Kimi.

Глава Perplexity Аравинд Шринивас рассказал о планах компании начать пост-тренинг моделей Kimi от Moonshot AI. Решение было принято после внутренних тестов, которые показали, что потенциал Kimi сопоставим с GPT-4 и Claude.

Решающим фактором стало превосходство Kimi K2 в бенчмарках на программирование. В частности, в тесте SWE-bench Verified она показала результат 65.8%, значительно опередив Claude с его 50.2%.

В Perplexity рассчитывают, что дальнейшее дообучение модели усилит ее агентные возможности.
CEO Perplexity сети X

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
110👍7🔥4
🔥 Бывший сотрудник OpenAI поделился откровенными впечатлениями о годе работы внутри одной из самых обсуждаемых компаний мира.

Он присоединился к команде в мае 2024, ушёл три недели назад — и решил написать личные размышления, пока всё ещё свежо в памяти.

Он подчёркивает:
никаких скандалов или внутренних конфликтов — просто желание снова что-то строить с нуля. Несмотря на это, он признаёт: сложно уйти с работы, где ты видишь рождение AGI своими глазами и участвуешь в запуске Codex.

Культура OpenAI — это хаос, скорость и независимость.

Компания за год выросла с 1000 до более чем 3000 сотрудников. Почти все руководители делают совершенно другую работу, чем пару лет назад. И всё внутри строится снизу вверх: roadmap’ов не было, а идеи рождались и запускались без бюрократии.

Всё общение происходит в Slack — никаких email, почти никакого планирования. Команды могут быть хаотичны и перегружены, но часто это работает: если идея крутая, люди просто начинают делать, и вокруг появляется команда.

Руководители не мешают, а помогают — особенно в исследовательских командах. Исследователь воспринимается как мини-руководитель: выбрал интересную задачу — вперёд. Главное — не «казаться», а «делать». Политика и презентации — не в цене. Лучшие идеи побеждают.

OpenAI умеет разворачиваться на ходу. Как только появляется новая информация, стратегия может кардинально поменяться — и в этом сила. Вдохновлённый атмосферой Segment, автор признаёт: OpenAI удалось сохранить эту гибкость даже при таком масштабе.

Закрытость — часть культуры.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри. Но при этом она остаётся самой открытой из «больших AI-лабораторий»: модели попадают в API, доступны не только корпорациям, но и отдельным пользователям.

Внимание к реальным рискам (злоупотребления, манипуляции, self-harm) — важный фокус внутри. Хоть фундаментальные угрозы (в духе "intelligence explosion") тоже обсуждаются, упор в работе на конкретные и прикладные сценарии.

Технологически OpenAI — монорепозиторий на Python, немного Rust и Go. Всё крутится на Azure, но доверяют только 2–3 сервисам. Инфраструктура напоминает ранний Facebook: всё движется быстро, дублируется, много внутренней разработки и отсутствие строгих архитектурных комитетов.

Он отдельно отметил уникальность команды Codex, с которой провёл последние 3 месяца. За 7 недель (!) они с нуля запустили продукт: с контейнерным рантаймом, fine-tuning моделей, git-интеграцией и полноценным асинхронным агентом. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.

Codex показал: будущее программирования будет похоже на общение с ассистентом, а не набор кода строка за строкой. С момента запуска Codex сгенерировал более 630 000 pull request’ов — это десятки тысяч на каждого инженера в команде.

Несмотря на скандалы в пресе — тысячи людей, искренне верящих, что строят нечто важное. OpenAI остаётся одной из самых амбициозных организаций в мире: не только чат, не только API, но и hardware, агенты, изображения — и это ещё не всё.

📌 Читать

@data_analysis_ml

#openai #ai #ml #llm #chatgpt
16👍9🔥6🥴1
This media is not supported in your browser
VIEW IN TELEGRAM
Не прошло и дня: эра 3D-вайфу на базе ИИ набирает обороты.

Первые open-source версии этого чуда уже на доступны на GitHub

https://github.com/Jackywine/Bella

@data_analysis_ml

#ai #ml
🔥118👍4😱3
This media is not supported in your browser
VIEW IN TELEGRAM
🧱 Pi³ (Pi-Cubed) — новая SOTA‑модель, которая строит 3D‑модель объекта по фотографиям 📸

💡 Главное:
— На вход подается несколько фото с разных ракурсов — и она восстанавливает объёмную 3D‑форму
— Не важно, в каком порядке поданы изображения
— Модель сама определяет, где стояла камера, как выглядел объект в объёме, и выдаёт готовое 3D

⚙️ Под капотом:
— Работает без supervision
— Не требует фиксированной позиции камеры
— Отлично подходит для 3D‑сканирования, реконструкции, AR/VR и генеративных задач

📄 Paper: https://yyfz.github.io/pi3/
👨‍💻 Code: https://github.com/yyfz/Pi3
🤗 Demo: https://huggingface.co/spaces/yyfz233/Pi3

#3d #ml #reconstruction
6👍4🔥4
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга

Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов

📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков

🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)

Попробовать бесплатно можно:
🟡Через чат: ttps://chat.qwen.ai/)
🟡GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct

Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.

#qwen #ml #ai #llm #Alibaba

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍97
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI анонсировала дату проведения DevDay.

OpenAI объявила, что ее следующая конференция для разработчиков, DevDay, состоится 6 октября 2025 года в Сан-Франциско. На мероприятии выступят Сэм Альтман и Грэг Брокман. DevDay традиционно становится площадкой для главных анонсов OpenAI, и в этом году разработчикам обещают ранний доступ к информации о будущих продуктах и технологиях.

Конференция планирует собрать более 1500 разработчиков. Регистрация на очное участие открыта в формате подачи заявок до 30 июля, а приглашения будут разосланы в середине августа. Стоимость участия составит 650 долларов. Для тех, кто не сможет присутствовать лично, будет организована прямая трансляция основной части мероприятия, а записи остальных сессий опубликуют позже.
openai.com

✔️ Proton представила Lumo: защищенный чат-бот с фокусом на приватность.

Швейцарская компания Proton, известная своим одноименным почтовым сервисом, выпустила автономного ИИ-ассистента Lumo. Чат-бот позиционируется как безопасная альтернатива продуктам от крупных технологических корпораций.

Lumo умеет обобщать документы, писать код, составлять черновики писем и отвечать на веб-запросы. Сервис работает исключительно на открытых языковых моделях, размещенных в собственных дата-центрах Proton в Европе. Вся переписка защищена сквозным шифрованием с "нулевым доступом", что не позволяет самой компании или третьим лицам читать и хранить сообщения.

Попробовать Lumo можно без регистрации через веб-клиент или мобильные приложения, но с ограничениями. Платная подписка Lumo Plus за $12.99 в месяц снимает лимиты на общение и позволяет загружать файлы большего размера.
proton.me

✔️ Google DeepMind Aeneas: открытая ИИ-система для восстановления латинских надписей.

Google DeepMind выпустила Aeneas, опенсорсный инструмент на базе ИИ, предназначенный для помощи историкам в работе с фрагментарными древними надписями. Система анализирует неполные транскрипции и изображения, после чего определяет вероятное место и дату происхождения текста, предлагает варианты недостающих слов и находит аналоги в корпусе известных надписей.

Модель, обученная на 200 000 каталогизированных текстов, является развитием более ранней системы Ithaca для греческого языка. В исследовании, опубликованном в Nature, Aeneas улучшил генерацию научных гипотез в 90% случаев, а его оценки происхождения и датировки совпали с консенсусом ученых.

Aeneas доступна бесплатно для ученых, преподавателей и сотрудников музеев.
theguardian.com

✔️ AWS закрывает свою ИИ-лабораторию в Шанхае.

Amazon Web Services объявила о закрытии своей исследовательской ИИ-лаборатории в Шанхае. В компании это решение назвали трудным, оно завершает семилетнюю историю работы центра, который занимался передовыми разработками в области машинного обучения. По словам одного из научных сотрудников, подразделение расформировывают из-за "стратегических корректировок на фоне напряженности между США и Китаем".

Лаборатория, открытая в 2018 году, была весьма продуктивной: на ее счету более 100 научных публикаций и создание популярной open-source библиотеки Deep Graph Library. В лучшие времена в ней работало более 1000 человек.
ft.com

✔️ Компания Марка Цукерберга разработала нейромоторный браслет, работающий без персональной калибровки.

Устройство, разработанное в Reality Labs представляет собой браслет, который считывает электрическую активность мышц предплечья (sEMG), напрямую декодируя двигательные намерения пользователя.

Главное достижение - разработка универсальной модели, обученной на данных тысяч людей. В отличие от аналогов, требующих длительной настройки под каждого человека, эта система работает из коробки, без предварительной калибровки под новых пользователей.

В тестах интерфейс продемонстрировал распознавание рукописного ввода со скоростью почти 21 слово в минуту, точное определение дискретных жестов (щипки, свайпы) и плавное управление курсором. При этом короткая персональная донастройка на данных конкретного пользователя может повысить точность еще на 16%.
nature.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍3🔥3