مهندسی داده
811 subscribers
112 photos
7 videos
24 files
320 links
BigData.ir کانال رسمی وب سایت
مطالبی راجع به مهندسی داده و طراحی زیرساخت‌های پردازش دیتا و ابزارهای مدرن دیتا
ارتباط با ادمین: @smbanaei
گروه تخصصی مهندسی داده 👇
https://t.iss.one/bigdata_ir_discussions2
کانال یوتیوب 👇
https://www.youtube.com/@irbigdata
Download Telegram
پستگرس در عصر هوش مصنوعی: از انتخاب استارتاپ‌ها تا تمرکز غول‌های فناوری


در نیمه اول ۲۰۲۵، #PostgreSQL بار دیگر نشان داد که فقط یک پایگاه‌داده نیست؛ بلکه قلب تپنده‌ی تحول در زیرساخت‌های داده و هوش مصنوعی است. خبرهای مهم، سرمایه‌گذاری‌های سنگین، و توسعه سریع اکوسیستمش، گویای یک واقعیت جدید هستند:

🧠 #پستگرس حالا یکی از بازیگران اصلی در عصر AI است.




🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres

در کنفرانس Snowflake Summit 2025 اعلام شد:


💼 غول دنیای انباره‌های داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.

🎯 هدف: توسعه یک نسخه سازمانی و تقویت‌شده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.

این خرید نشان‌دهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصی‌اش شناخته می‌شد.

🔹 سرمایه‌گذاری‌های بزرگ دیگر:

💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.

🌱 ابزار محبوب #Supabase، محبوب‌ترین پلتفرم متن‌باز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزش‌گذاری: ۲ میلیارد دلار).

📌 این‌ها نشون می‌دهند که #PostgreSQL از یک دیتابیس محبوب برای پروژه‌های کوچک، به زیرساخت اصلی پلتفرم‌های داده نسل بعدی تبدیل شده.


🔹 چرا PostgreSQL این‌قدر مهم شده؟

انعطاف‌پذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی

قابل توسعه: اکستنشن‌هایی مثل pgvector برای داده‌های برداری (AI/LLM)

مقیاس‌پذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین

امن و متن‌باز: بدون vendor lock-in، با اکوسیستم غنی


📈 در دو سال اخیر:


🔹چندین افزونه برای جستجوی برداری

🔹ابزارهای اتصال PostgreSQL به LLMها

🔹و حتی ساخت لِیک‌هوس با PostgreSQL

منتشر شده‌اند. این یعنی PostgreSQL آماده‌ی دنیای AI-first است.

اما یک نکته مهم دیگر وجود دارد :

🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپ‌ها

بیشتر استارتاپ‌ها با PostgreSQL شروع می‌کنن چون:

👶 سریع، ساده، بدون هزینه لایسنس

🧪 ابزارهای کامل توسعه و تست

📚 مستندات و جامعه فعال

اما با رشد محصول و پیچیده‌تر شدن نیازها، معمولاً به نسخه‌های Managed و Enterprise مهاجرت می‌کنن:


☁️ Azure Database for PostgreSQL

🧱 Crunchy Bridge

🏢 EDB Postgres Advanced

این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیت‌های نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.

البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.

🎯 جمع‌بندی:

پستگرس حالا دیگر فقط "پایگاه‌داده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساخت‌های داده در عصر AI — از گاراژ استارتاپ‌ها تا دیتاسنتر غول‌ها.

#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
👍6
اگر رهبر یک تیم دیتا هستید (یا قصد دارید باشید)، این ریپازیتوری را از دست ندهید:

🔗 Data Team Handbook
https://github.com/sdg-1/data-team-handbook/

راهنمایی جامع برای مدیریت مؤثر تیم‌های داده، با ده‌ها منبع دست‌چین‌شده برای چالش‌های واقعی:
گذار از IC به مدیر
رشد مهارت اعضای تیم
مدیریت پروژه‌های دیتا
بهینه‌سازی زیرساخت، هزینه و ابزارها
تمپلیت‌ها و چک‌لیست‌های قابل استفاده


📚 منابع شامل:

بهترین کتاب‌ها در مدیریت فنی و مهندسی داده

مقالات دقیق درباره DataOps، Data Culture و Team Structure

ویدیوهای آموزشی از لیدهای فنی در Amazon، Google و Stripe


چرا این منبع برای شما ضروری‌ست؟


🛠 دسته‌بندی بر اساس چالش‌های واقعی

انتقال از مهندس اختصاصی (IC) به نقش مدیریت

مقیاس‌بندی زیرساخت (ETL/ELT، CDC، Data Warehouse)

طراحی پایداری و مانیتورینگ خطوط داده


بهینه‌سازی هزینه و انتخابِ سرویس‌های ابری

📈 افزایش بهره‌وری تیم


الگوهای پروژه و تمپلیت‌های CI/CD برای دیتاپایپ‌لاین

چک‌لیست ۳۰-۶۰-۹۰ روز اول برای آنبوردینگ سریع

چگونه دستورات SQL حرفه ای بنویسیم و بهترین رویه‌های کوئری‌نویسی


🤝 رشد و نگهداشت استعداد


الگوهای مصاحبه و ارزیابی مهارت‌های داده

استراتژی‌های حفظ نیروی کلیدی در مقابل ترک پروژه

🎓 منابع آموزشی برتر

کتاب‌های کلیدی (An Elegant Puzzle, Data Teams Model)

مقالات عمیق در معماری داده، فرهنگ مهندسی و مدیریت فنی

ویدیوهای عملی از مهندسین ارشد گوگل، آمازون و Netflix


🧩 همه چیز دسته‌بندی‌شده بر اساس چالش‌های رایج، نه صرفاً نوع محتوا.

🌍 متن‌باز و مشارکت‌پذیر – می‌توانید منابع خود را هم اضافه کنید!

hashtag#DataEngineering hashtag#DataTeams hashtag#DataLeadership hashtag#ETL hashtag#DataInfra hashtag#TeamManagement hashtag#SeattleDataGuy hashtag#دیتا hashtag#مهندسی_داده hashtag#مدیریت_تیم
👍2
نقشه راه Data 3.0 در عصر Lakehouse

خلاصه‌ای از گزارش Bessemer Venture Partners که معماری لیک‌هوس را در دوران مدرن، بسیار آینده‌دار دانسته است. بیایید آنرا با هم مرور کنیم.

📌 https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

شرکت سرمایه‌گذاری Bessemer Venture Partners (BVP) که سابقه‌ای بیش از یک قرن در حمایت از شرکت‌های نوآور در حوزه‌های ابری، فین‌تک، 🤖 هوش مصنوعی و 🛡 امنیت سایبری دارد، اخیراً گزارشی با عنوان «نقشه راه: Data 3.0 در عصر #Lakehouse» منتشر کرده است. این گزارش با تکیه بر تجربه BVP در سرمایه‌گذاری بر برندهایی مانند Shopify، LinkedIn، Pinterest و Databricks، چشم‌اندازی دقیق از نسل سوم زیرساخت‌های داده ارائه می‌دهد.


🔍 چرا Data 3.0 اهمیت دارد؟

مدیریت داده‌ها طی سه نسل دستخوش تحولات عظیمی شده است:

📦 نسخه اول - Data 1.0 (۱۹۷۰–۲۰۰۰):

تمرکز بر پایگاه‌های داده رابطه‌ای (Oracle، MySQL)

استفاده از انبارهای داده‌ای

محدودیت در مقیاس‌پذیری

ناتوان در پردازش داده‌های غیرساختاریافته

🌊 نسخه دوم - Data 2.0 (از ۲۰۱۰ به بعد):

ظهور Hadoop و Spark برای پردازش داده‌های متنوع و حجیم

انعطاف‌پذیری بیشتر

باتلاق داده‌ای (Data Swamp) به‌دلیل ضعف در کیفیت و حاکمیت

🚀 نسخه سوم - Data 3.0 (از ۲۰۲۰ به بعد):

یکپارچگی

پردازش لحظه‌ای

استفاده از هوش مصنوعی

📌 ابزارهای کلیدی: Lakehouse، Delta Lake، Iceberg، Hudi، خطوط لوله AI-driven


💡 معماری Lakehouse چیست و چرا انقلابی است؟

لیک‌هوس ترکیبی از قدرت Data Warehouse و انعطاف Data Lake است.


ویژگی‌های کلیدی:

📌 پشتیبانی از داده‌های ساختاریافته و غیرساختاریافته

📌 فرمت‌های باز با قابلیت‌های ACID، Time Travel، پردازش لحظه‌ای

📌 کاهش افزونگی داده و وابستگی به Vendorها

این معماری پایه‌ای برای توسعه ابزارهای تحلیلی و برنامه‌های AI در مقیاس بزرگ است.


🔮 چهار روند کلیدی در Data 3.0 به روایت BVP

1️⃣ خطوط لوله هوشمند و لحظه‌ای

🛠 ابزارهای جدید: Prefect، Windmill، dltHub

⚙️ فناوری‌های جریانی: Apache Flink، Kafka

⚡️ پلتفرم‌های بلادرنگ مانند Chalk برای تصمیم‌گیری سریع


2️⃣ متادیتا به‌عنوان منبع حقیقت

🛠 ابزارهایی مانند Datastrato، Acryl Data

💡 بهینه‌سازهایی مثل Flarion.io و Greybeam


3️⃣ تحول در موتورهای محاسباتی:

🛠 موتورهای سبک و سریع: DuckDB، ClickHouse، Daft

🌕 بسترهای Iceberg-native مثل Mooncake و Bauplan و RisingWave


4️⃣ ادغام مهندسی داده و نرم‌افزار:

🧩 ابزارهایی مانند dbt و Gable

🔄 یکپارچه‌سازی با CI/CD، نسخه‌سازی، تست خودکار


💸 فرصت‌های سرمایه‌گذاری و نوآوری

BVP باور دارد که Data 3.0 فرصت بی‌سابقه‌ای برای بنیان‌گذاران ایجاد کرده تا:

🔧 ابزارهای منبع‌باز و ابری جدید بسازند

🚀 موتورهای بهینه‌شده برای AI ارائه دهند

📊 راه‌حل‌های هوشمند برای متادیتا خلق کنند


📌 جمع‌بندی : معماری Lakehouse نماد تحول در مدیریت داده‌هاست:

✔️ عملکرد بالا

✔️ تحلیل لحظه‌ای

✔️ پشتیبانی از AI

✔️ مقیاس‌پذیری بالا

آینده از آن تیم‌هایی است که به جای مدیریت زیرساخت‌های پیچیده، بر خلق ارزش از داده‌ها تمرکز می‌کنند.

🏷 #Data3 #Lakehouse #AI #Metadata #StreamingData #DuckDB #Iceberg #DeltaLake #BVP #DataEngineering #ModernDataStack #RealTimeAnalytics #OpenSource #DataInfra #Startup #DataPlatform #VentureCapital #FutureOfData
👍2