Forwarded from عکس نگار
تحولی بزرگ در Apache Airflow: نسخه ۳ در راه است! 🚀
بعد از سالها تجربه با نسخههای ۱ و ۲، حالا نسخه ۳ با بازطراحی گسترده و حل چالشهای قدیمی در دسترس توسعهدهندگان قرار گرفته — فعلاً بهصورت نسخه کاندید انتشار (Release Candidate).
در ادامه نگاهی داریم به مهمترین تغییرات:
🔁 نسخهبندی DAGها و تاریخچه اجراها
در گذشته بررسی تغییرات در DAGها کاری زمانبر و دشوار بود.
✅ حالا در نسخه ۳، تاریخچهی کامل DAGها از طریق UI (در Grid و Graph View) در دسترس است — حتی حذف یا اضافه شدن Taskها بین نسخهها قابل ردیابی شده است.
🧠 Backfill هوشمند و یکپارچه
Backfillها قبلاً مشکلاتی در عملکرد و مقیاسپذیری داشتند.
✅ اکنون توسط Scheduler مدیریت میشوند و از طریق UI هم قابل اجرا هستند. مناسب برای ML و ETL.
🌐 اجرای وظایف در هر زبان و محیطی
تا قبل از این، فقط Python در دسترس بود.
✅ با Task Execution API، Airflow به معماری Client/Server رسیده.
میتوانید Taskها را از Python، Go (و بزودی زبانهای دیگر) اجرا کنید — حتی در Edge یا Multi-cloud.
📩 زمانبندی بر اساس رویدادها (Event-Driven Scheduling)
در نسخههای قبلی، اجرای DAGها تنها براساس زمان یا وابستگیهای داخلی ممکن بود.
✅ حالا Airflow 3 با معرفی مفهوم «داراییهای دادهای» (Data Assets) و «ناظران» (Watchers) امکان اجرای DAG بر اساس رویدادهای خارجی را فراهم کرده است.
بهصورت پیشفرض، اتصال به AWS SQS فراهم شده است — مثلاً با رسیدن یک پیام به SQS، یک DAG میتواند اجرا شود.
اما نکته مهمتر:
🔄 این ساختار ماژولار است و میتوانید Apache Kafka یا سایر سیستمهای پیامرسان را نیز جایگزین کنید. کافی است یک Watcher مخصوص Kafka بنویسید که روی Topic مشخصی گوش دهد و پیامهای جدید را به Airflow منتقل کند.
این امکان، Airflow را برای سناریوهای real-time در مقیاس بالا، بسیار انعطافپذیر میکند.
🤖 اجرای بلادرنگ برای هوش مصنوعی
تاکنون وابستگی به execution_date مانع اجرای DAGهای Realtime بود.
✅ اکنون میتوانید DAGهایی بدون وابستگی زمانی اجرا کنید — عالی برای Inference و API-based Workflows.
🖥 رابط کاربری کاملاً جدید
UI قدیمی سنگین و محدود بود.
✅ Airflow 3 با React و FastAPI بازنویسی شده. سریع، سبک و قابل توسعه.
همچنین Flask AppBuilder از Core جدا شده و به یک پکیج مستقل تبدیل شده.
🔐 ایزولاسیون وظایف و امنیت بالا
اجرای Taskها در یک محیط مشترک مشکلساز بود.
✅ حالا هر Task میتواند بهصورت ایزوله اجرا شود. CLI هم با airflowctl برای دسترسی از راه دور مجهز شده.
🗳 این نسخه فعلاً در مرحله آزمایشی و بررسی جامعه توسعهدهندگان است. اگر تجربه Airflow دارید، فرصت خوبیه برای تست و ارسال بازخورد قبل از انتشار نهایی.
#مهندسی_داده #ApacheAirflow3 #DataEngineering #MLOps #Kafka #EventDriven #DataOps #Automation 🚀
منبع : https://www.linkedin.com/pulse/apache-airflow-3-release-candidate-apr-4-2025-vikram-koka-3lhmc/
بعد از سالها تجربه با نسخههای ۱ و ۲، حالا نسخه ۳ با بازطراحی گسترده و حل چالشهای قدیمی در دسترس توسعهدهندگان قرار گرفته — فعلاً بهصورت نسخه کاندید انتشار (Release Candidate).
در ادامه نگاهی داریم به مهمترین تغییرات:
🔁 نسخهبندی DAGها و تاریخچه اجراها
در گذشته بررسی تغییرات در DAGها کاری زمانبر و دشوار بود.
✅ حالا در نسخه ۳، تاریخچهی کامل DAGها از طریق UI (در Grid و Graph View) در دسترس است — حتی حذف یا اضافه شدن Taskها بین نسخهها قابل ردیابی شده است.
🧠 Backfill هوشمند و یکپارچه
Backfillها قبلاً مشکلاتی در عملکرد و مقیاسپذیری داشتند.
✅ اکنون توسط Scheduler مدیریت میشوند و از طریق UI هم قابل اجرا هستند. مناسب برای ML و ETL.
🌐 اجرای وظایف در هر زبان و محیطی
تا قبل از این، فقط Python در دسترس بود.
✅ با Task Execution API، Airflow به معماری Client/Server رسیده.
میتوانید Taskها را از Python، Go (و بزودی زبانهای دیگر) اجرا کنید — حتی در Edge یا Multi-cloud.
📩 زمانبندی بر اساس رویدادها (Event-Driven Scheduling)
در نسخههای قبلی، اجرای DAGها تنها براساس زمان یا وابستگیهای داخلی ممکن بود.
✅ حالا Airflow 3 با معرفی مفهوم «داراییهای دادهای» (Data Assets) و «ناظران» (Watchers) امکان اجرای DAG بر اساس رویدادهای خارجی را فراهم کرده است.
بهصورت پیشفرض، اتصال به AWS SQS فراهم شده است — مثلاً با رسیدن یک پیام به SQS، یک DAG میتواند اجرا شود.
اما نکته مهمتر:
🔄 این ساختار ماژولار است و میتوانید Apache Kafka یا سایر سیستمهای پیامرسان را نیز جایگزین کنید. کافی است یک Watcher مخصوص Kafka بنویسید که روی Topic مشخصی گوش دهد و پیامهای جدید را به Airflow منتقل کند.
این امکان، Airflow را برای سناریوهای real-time در مقیاس بالا، بسیار انعطافپذیر میکند.
🤖 اجرای بلادرنگ برای هوش مصنوعی
تاکنون وابستگی به execution_date مانع اجرای DAGهای Realtime بود.
✅ اکنون میتوانید DAGهایی بدون وابستگی زمانی اجرا کنید — عالی برای Inference و API-based Workflows.
🖥 رابط کاربری کاملاً جدید
UI قدیمی سنگین و محدود بود.
✅ Airflow 3 با React و FastAPI بازنویسی شده. سریع، سبک و قابل توسعه.
همچنین Flask AppBuilder از Core جدا شده و به یک پکیج مستقل تبدیل شده.
🔐 ایزولاسیون وظایف و امنیت بالا
اجرای Taskها در یک محیط مشترک مشکلساز بود.
✅ حالا هر Task میتواند بهصورت ایزوله اجرا شود. CLI هم با airflowctl برای دسترسی از راه دور مجهز شده.
🗳 این نسخه فعلاً در مرحله آزمایشی و بررسی جامعه توسعهدهندگان است. اگر تجربه Airflow دارید، فرصت خوبیه برای تست و ارسال بازخورد قبل از انتشار نهایی.
#مهندسی_داده #ApacheAirflow3 #DataEngineering #MLOps #Kafka #EventDriven #DataOps #Automation 🚀
منبع : https://www.linkedin.com/pulse/apache-airflow-3-release-candidate-apr-4-2025-vikram-koka-3lhmc/
👍3
پستگرس در عصر هوش مصنوعی: از انتخاب استارتاپها تا تمرکز غولهای فناوری
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
در نیمه اول ۲۰۲۵، #PostgreSQL بار دیگر نشان داد که فقط یک پایگاهداده نیست؛ بلکه قلب تپندهی تحول در زیرساختهای داده و هوش مصنوعی است. خبرهای مهم، سرمایهگذاریهای سنگین، و توسعه سریع اکوسیستمش، گویای یک واقعیت جدید هستند:
🧠 #پستگرس حالا یکی از بازیگران اصلی در عصر AI است.
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
👍6
معرفی Kedro 1.0 — فریمورکی حرفهای برای ساخت پروژههای دادهای و هوش مصنوعی 🚀
🔍 چالش اصلی:
در پروژههای دادهای واقعی، دادهها از منابع مختلف میآیند و مراحل متعددی باید طی شود. بدون چارچوبی منظم، کدها بینظم و غیرقابل نگهداری میشوند و همکاری تیمی دشوار میشود.
Kedro این مشکلات را اینطور حل میکند:
📂 تقسیم پروژه به بخشهای مستقل و قابل مدیریت
🔄 تعریف دقیق و قابل تکرار جریانهای کاری (Pipeline)
📚 مدیریت دادهها در یک سیستم منسجم به نام DataCatalog
🤝 استانداردسازی برای همکاری آسانتر تیمی
📊 ابزارهای بصری برای مشاهده و مدیریت اجرای پروژه
⚙️ امکان توسعه و سازگاری با ابزارهای مختلف
💡 ویژگیهای کلیدی Kedro 1.0:
نسخه ۱.۰ با بهبودهای فراوانی به شما قدرت میدهد تا پروژههای پیچیده را با اعتماد اجرا کنید و سریعتر توسعه دهید:
🔄 DataCatalog بازطراحی شده: مدیریت دادهها به شکلی سادهتر و قویتر
🧩 بهبود فضای نام (Namespace): گروهبندی و استفاده انعطافپذیرتر دادهها
🚀 بهبود رانرها: اجرای بهتر و پایدارتر جریانهای کاری
📚 مستندات نوین: راهنمایی آسان و بهروز برای شروع سریع
👁🗨 نمایش وضعیت خط لوله در Kedro Viz: نظارت بصری بر اجرای پروژه
🤖 آماده برای هوش مصنوعی نسل جدید: پشتیبانی از جریانهای کاری پیشرفته و AI مولد
👥 چه کسانی باید از Kedro استفاده کنند؟
- دانشمندان داده و مهندسان یادگیری ماشین که دنبال کدی قابل بازتولید و سازمانیافته هستند
- مهندسان داده که خطوط لوله دادهای پیچیده میسازند و مدیریت میکنند
- تیمها و سازمانهایی که میخواهند همکاری و هماهنگی پروژههای دادهایشان را بهبود دهند
- کسانی که وارد حوزه هوش مصنوعی مولد و پروژههای نوین دادهای میشوند
🌟 چرا Kedro 1.0 را انتخاب کنیم؟
با Kedro، پروژههای دادهای خود را به سطحی کاملاً حرفهای میبرید:
کدی منظم، قابل تست و مقیاسپذیر دارید که به رشد و تغییر پروژه کمک میکند و کار تیمی را سادهتر میکند.
📥 همین امروز شروع کنید!
Kedro ساده نصب میشود و جامعه بزرگی پشت آن است.
برای اطلاعات بیشتر و دریافت مستندات به kedro.org مراجعه کنید.
خلاصه در یک نگاه:
📂 ساختاردهی ماژولار پروژهها
🔄 تعریف و مدیریت جریانهای کاری
📚 DataCatalog پیشرفته
🤝 تسهیل همکاری تیمی
📊 ابزارهای نظارتی و بصری
⚙️ توسعهپذیری و سازگاری با ابزارهای نوین
🤖 آماده برای چالشهای آینده AI
#Kedro #DataScience #MachineLearning #DataEngineering #AI #OpenSource #Python #DataPipeline #MLOps #GenerativeAI
چهارسال پیش هم این پروژه را در سایت مهندسی داده معرفی کردیم :
https://lnkd.in/dbn5pBFH
در دنیای پیچیده داده و یادگیری ماشین، مدیریت پروژههای دادهای با کدهای پراکنده و مراحل متعدد چالش بزرگی است. Kedro با ارائه ساختاری منظم، به شما کمک میکند تا پروژههای خود را قابل توسعه، قابل تکرار و قابل اعتماد بسازید.
🔍 چالش اصلی:
در پروژههای دادهای واقعی، دادهها از منابع مختلف میآیند و مراحل متعددی باید طی شود. بدون چارچوبی منظم، کدها بینظم و غیرقابل نگهداری میشوند و همکاری تیمی دشوار میشود.
Kedro این مشکلات را اینطور حل میکند:
📂 تقسیم پروژه به بخشهای مستقل و قابل مدیریت
🔄 تعریف دقیق و قابل تکرار جریانهای کاری (Pipeline)
📚 مدیریت دادهها در یک سیستم منسجم به نام DataCatalog
🤝 استانداردسازی برای همکاری آسانتر تیمی
📊 ابزارهای بصری برای مشاهده و مدیریت اجرای پروژه
⚙️ امکان توسعه و سازگاری با ابزارهای مختلف
💡 ویژگیهای کلیدی Kedro 1.0:
نسخه ۱.۰ با بهبودهای فراوانی به شما قدرت میدهد تا پروژههای پیچیده را با اعتماد اجرا کنید و سریعتر توسعه دهید:
🔄 DataCatalog بازطراحی شده: مدیریت دادهها به شکلی سادهتر و قویتر
🧩 بهبود فضای نام (Namespace): گروهبندی و استفاده انعطافپذیرتر دادهها
🚀 بهبود رانرها: اجرای بهتر و پایدارتر جریانهای کاری
📚 مستندات نوین: راهنمایی آسان و بهروز برای شروع سریع
👁🗨 نمایش وضعیت خط لوله در Kedro Viz: نظارت بصری بر اجرای پروژه
🤖 آماده برای هوش مصنوعی نسل جدید: پشتیبانی از جریانهای کاری پیشرفته و AI مولد
👥 چه کسانی باید از Kedro استفاده کنند؟
- دانشمندان داده و مهندسان یادگیری ماشین که دنبال کدی قابل بازتولید و سازمانیافته هستند
- مهندسان داده که خطوط لوله دادهای پیچیده میسازند و مدیریت میکنند
- تیمها و سازمانهایی که میخواهند همکاری و هماهنگی پروژههای دادهایشان را بهبود دهند
- کسانی که وارد حوزه هوش مصنوعی مولد و پروژههای نوین دادهای میشوند
🌟 چرا Kedro 1.0 را انتخاب کنیم؟
با Kedro، پروژههای دادهای خود را به سطحی کاملاً حرفهای میبرید:
کدی منظم، قابل تست و مقیاسپذیر دارید که به رشد و تغییر پروژه کمک میکند و کار تیمی را سادهتر میکند.
📥 همین امروز شروع کنید!
Kedro ساده نصب میشود و جامعه بزرگی پشت آن است.
برای اطلاعات بیشتر و دریافت مستندات به kedro.org مراجعه کنید.
خلاصه در یک نگاه:
📂 ساختاردهی ماژولار پروژهها
🔄 تعریف و مدیریت جریانهای کاری
📚 DataCatalog پیشرفته
🤝 تسهیل همکاری تیمی
📊 ابزارهای نظارتی و بصری
⚙️ توسعهپذیری و سازگاری با ابزارهای نوین
🤖 آماده برای چالشهای آینده AI
#Kedro #DataScience #MachineLearning #DataEngineering #AI #OpenSource #Python #DataPipeline #MLOps #GenerativeAI
چهارسال پیش هم این پروژه را در سایت مهندسی داده معرفی کردیم :
https://lnkd.in/dbn5pBFH
❤2