چطور از هوش مصنوعی در برنامهنویسی حرفهایتر استفاده کنیم؟
در دنیای امروز، ابزارهای هوش مصنوعی مثل Cursor و Copilot باعث شدهاند فکر کنیم ساخت هر پروژهای سادهتر از همیشه شده است.
اما خیلی زود با یک واقعیت روبرو میشویم: اگر بدون طراحی درست و مدیریت دقیق از AI کمک بگیریم، خیلی راحت در چرخهی فرسایندهی خطاها و آشفتگی گم میشویم.
🔁 این چرخهی آزاردهنده معمولا اینطور شروع میشود:
✅از عامل هوشمند میخواهیم مشکلی را حل کند.
✅پاسخ میدهد که مشکل رفع شده، ولی خطا هنوز باقی است.
✅دوباره درخواست میکنیم، #AI قول میدهد بهتر شده، ولی مشکل جدیدی ظاهر میشود.
✅خطای جدید رفع میشود، ولی خطای قبلی برمیگردد!
✅در نهایت حتی یادمان میرود دقیقا چه چیزی میخواستیم بسازیم...
برای بهبود این تجربهی فرساینده و جلوگیری از این چرخهی غیرحرفهای، امروز خلاصهای از پست آموزندهی آقای Peter Wooldridge در لینکدین را با هم مرور میکنیم و ادامه متن الهام گرفته از پست ایشان است:
https://www.linkedin.com/feed/update/urn:li:activity:7321534312430854146/
✏️ برای جلوگیری از این مسیر فرسایشی و ساختن یک تجربهی حرفهایتر، چند اصل ساده ولی حیاتی وجود دارد:
🔁 قبل از هر کاری طراحی واضح انجام بده: دقیقا مشخص کن چه چیزی میخواهی و چه بخشهایی در پروژه وجود دارد.
❓ به جای اینکه مستقیم درخواست کدنویسی بدهی، سوالات روشن و هدفمند بپرس. مثلا: "بهترین روش برای مدیریت خطاهای API چیست؟"
📜 اگر از Cursor استفاده میکنی، حتما یک فایل .cursorrules بساز تا هوش مصنوعی بداند کی باید فکر کند و کی باید کدنویسی کند.
( از آدرس زیر قوانین cursor را بردارید و آنرا به بخش قوانین در تنظیمات cursor اضافه کنید :https://x.com/0xDesigner/status/1915152801761812783 )
🌐 برای دسترسی سریع به مستندات، از دستور @web استفاده کن.
🛠 هنگام دیباگ کردن، به جای فرمان دادن، با سوال پیش برو. هدایت کردن بهتر از تحمیل کردن است.
⏪ اگر تغییرات بد پیش رفت، ریورت کن، به عقب برگرد، و برنامه را سادهتر بچین.
🔁 در صورت نیاز، بدون ترس پروژه را بازطراحی کن و با یک طرح سادهتر دوباره شروع کن.
توضیحات فوق به همراه شکلهای مورد نیاز از تنظمیات cursor در این آدرس از توئیتر قابل مشاهده است :
https://x.com/0xDesigner/status/1915152801761812783
🧠 در مورد Copilot هم بهتر است بدانیم:
دستیار Copilot برای پاسخهای سریع و تولید اولیهی کد فوقالعاده است.
اما استفادهی بدون مدیریت از حالت Agent آن میتواند خیلی سریع پروژه را وارد آشفتگی کند.
🎯 توصیهی کاربردی: بیشتر از بخش Ask استفاده کن، و تنها زمانی سراغ حالت Agent برو که طراحی، تقسیم وظایف و هدف هر بخش را از قبل مشخص کرده باشی.
✨ پس یادت باشد:
اول خوب طراحی کن → سوال دقیق بپرس → بعد از قدرت AI برای ساختن استفاده کن.
وگرنه به راحتی در یک حلقهی بیپایان از خطاها و دوبارهکاری گیر میکنی!
در دنیای امروز، ابزارهای هوش مصنوعی مثل Cursor و Copilot باعث شدهاند فکر کنیم ساخت هر پروژهای سادهتر از همیشه شده است.
اما خیلی زود با یک واقعیت روبرو میشویم: اگر بدون طراحی درست و مدیریت دقیق از AI کمک بگیریم، خیلی راحت در چرخهی فرسایندهی خطاها و آشفتگی گم میشویم.
🔁 این چرخهی آزاردهنده معمولا اینطور شروع میشود:
✅از عامل هوشمند میخواهیم مشکلی را حل کند.
✅پاسخ میدهد که مشکل رفع شده، ولی خطا هنوز باقی است.
✅دوباره درخواست میکنیم، #AI قول میدهد بهتر شده، ولی مشکل جدیدی ظاهر میشود.
✅خطای جدید رفع میشود، ولی خطای قبلی برمیگردد!
✅در نهایت حتی یادمان میرود دقیقا چه چیزی میخواستیم بسازیم...
برای بهبود این تجربهی فرساینده و جلوگیری از این چرخهی غیرحرفهای، امروز خلاصهای از پست آموزندهی آقای Peter Wooldridge در لینکدین را با هم مرور میکنیم و ادامه متن الهام گرفته از پست ایشان است:
https://www.linkedin.com/feed/update/urn:li:activity:7321534312430854146/
✏️ برای جلوگیری از این مسیر فرسایشی و ساختن یک تجربهی حرفهایتر، چند اصل ساده ولی حیاتی وجود دارد:
🔁 قبل از هر کاری طراحی واضح انجام بده: دقیقا مشخص کن چه چیزی میخواهی و چه بخشهایی در پروژه وجود دارد.
❓ به جای اینکه مستقیم درخواست کدنویسی بدهی، سوالات روشن و هدفمند بپرس. مثلا: "بهترین روش برای مدیریت خطاهای API چیست؟"
📜 اگر از Cursor استفاده میکنی، حتما یک فایل .cursorrules بساز تا هوش مصنوعی بداند کی باید فکر کند و کی باید کدنویسی کند.
( از آدرس زیر قوانین cursor را بردارید و آنرا به بخش قوانین در تنظیمات cursor اضافه کنید :https://x.com/0xDesigner/status/1915152801761812783 )
🌐 برای دسترسی سریع به مستندات، از دستور @web استفاده کن.
🛠 هنگام دیباگ کردن، به جای فرمان دادن، با سوال پیش برو. هدایت کردن بهتر از تحمیل کردن است.
⏪ اگر تغییرات بد پیش رفت، ریورت کن، به عقب برگرد، و برنامه را سادهتر بچین.
🔁 در صورت نیاز، بدون ترس پروژه را بازطراحی کن و با یک طرح سادهتر دوباره شروع کن.
توضیحات فوق به همراه شکلهای مورد نیاز از تنظمیات cursor در این آدرس از توئیتر قابل مشاهده است :
https://x.com/0xDesigner/status/1915152801761812783
🧠 در مورد Copilot هم بهتر است بدانیم:
دستیار Copilot برای پاسخهای سریع و تولید اولیهی کد فوقالعاده است.
اما استفادهی بدون مدیریت از حالت Agent آن میتواند خیلی سریع پروژه را وارد آشفتگی کند.
🎯 توصیهی کاربردی: بیشتر از بخش Ask استفاده کن، و تنها زمانی سراغ حالت Agent برو که طراحی، تقسیم وظایف و هدف هر بخش را از قبل مشخص کرده باشی.
✨ پس یادت باشد:
اول خوب طراحی کن → سوال دقیق بپرس → بعد از قدرت AI برای ساختن استفاده کن.
وگرنه به راحتی در یک حلقهی بیپایان از خطاها و دوبارهکاری گیر میکنی!
👍5
پستگرس در عصر هوش مصنوعی: از انتخاب استارتاپها تا تمرکز غولهای فناوری
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
در نیمه اول ۲۰۲۵، #PostgreSQL بار دیگر نشان داد که فقط یک پایگاهداده نیست؛ بلکه قلب تپندهی تحول در زیرساختهای داده و هوش مصنوعی است. خبرهای مهم، سرمایهگذاریهای سنگین، و توسعه سریع اکوسیستمش، گویای یک واقعیت جدید هستند:
🧠 #پستگرس حالا یکی از بازیگران اصلی در عصر AI است.
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
👍6
نقشه راه Data 3.0 در عصر Lakehouse
خلاصهای از گزارش Bessemer Venture Partners که معماری لیکهوس را در دوران مدرن، بسیار آیندهدار دانسته است. بیایید آنرا با هم مرور کنیم.
📌 https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
🔍 چرا Data 3.0 اهمیت دارد؟
مدیریت دادهها طی سه نسل دستخوش تحولات عظیمی شده است:
📦 نسخه اول - Data 1.0 (۱۹۷۰–۲۰۰۰):
✅ تمرکز بر پایگاههای داده رابطهای (Oracle، MySQL)
✅ استفاده از انبارهای دادهای
❌ محدودیت در مقیاسپذیری
❌ ناتوان در پردازش دادههای غیرساختاریافته
🌊 نسخه دوم - Data 2.0 (از ۲۰۱۰ به بعد):
✅ ظهور Hadoop و Spark برای پردازش دادههای متنوع و حجیم
✅ انعطافپذیری بیشتر
❌ باتلاق دادهای (Data Swamp) بهدلیل ضعف در کیفیت و حاکمیت
🚀 نسخه سوم - Data 3.0 (از ۲۰۲۰ به بعد):
✅ یکپارچگی
✅ پردازش لحظهای
✅ استفاده از هوش مصنوعی
📌 ابزارهای کلیدی: Lakehouse، Delta Lake، Iceberg، Hudi، خطوط لوله AI-driven
💡 معماری Lakehouse چیست و چرا انقلابی است؟
ویژگیهای کلیدی:
📌 پشتیبانی از دادههای ساختاریافته و غیرساختاریافته
📌 فرمتهای باز با قابلیتهای ACID، Time Travel، پردازش لحظهای
📌 کاهش افزونگی داده و وابستگی به Vendorها
این معماری پایهای برای توسعه ابزارهای تحلیلی و برنامههای AI در مقیاس بزرگ است.
🔮 چهار روند کلیدی در Data 3.0 به روایت BVP
1️⃣ خطوط لوله هوشمند و لحظهای
🛠 ابزارهای جدید: Prefect، Windmill، dltHub
⚙️ فناوریهای جریانی: Apache Flink، Kafka
⚡️ پلتفرمهای بلادرنگ مانند Chalk برای تصمیمگیری سریع
2️⃣ متادیتا بهعنوان منبع حقیقت
🛠 ابزارهایی مانند Datastrato، Acryl Data
💡 بهینهسازهایی مثل Flarion.io و Greybeam
3️⃣ تحول در موتورهای محاسباتی:
🛠 موتورهای سبک و سریع: DuckDB، ClickHouse، Daft
🌕 بسترهای Iceberg-native مثل Mooncake و Bauplan و RisingWave
4️⃣ ادغام مهندسی داده و نرمافزار:
🧩 ابزارهایی مانند dbt و Gable
🔄 یکپارچهسازی با CI/CD، نسخهسازی، تست خودکار
💸 فرصتهای سرمایهگذاری و نوآوری
BVP باور دارد که Data 3.0 فرصت بیسابقهای برای بنیانگذاران ایجاد کرده تا:
🔧 ابزارهای منبعباز و ابری جدید بسازند
🚀 موتورهای بهینهشده برای AI ارائه دهند
📊 راهحلهای هوشمند برای متادیتا خلق کنند
📌 جمعبندی : معماری Lakehouse نماد تحول در مدیریت دادههاست:
✔️ عملکرد بالا
✔️ تحلیل لحظهای
✔️ پشتیبانی از AI
✔️ مقیاسپذیری بالا
آینده از آن تیمهایی است که به جای مدیریت زیرساختهای پیچیده، بر خلق ارزش از دادهها تمرکز میکنند.
🏷 #Data3 #Lakehouse #AI #Metadata #StreamingData #DuckDB #Iceberg #DeltaLake #BVP #DataEngineering #ModernDataStack #RealTimeAnalytics #OpenSource #DataInfra #Startup #DataPlatform #VentureCapital #FutureOfData
خلاصهای از گزارش Bessemer Venture Partners که معماری لیکهوس را در دوران مدرن، بسیار آیندهدار دانسته است. بیایید آنرا با هم مرور کنیم.
📌 https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
شرکت سرمایهگذاری Bessemer Venture Partners (BVP) که سابقهای بیش از یک قرن در حمایت از شرکتهای نوآور در حوزههای ابری، فینتک، 🤖 هوش مصنوعی و 🛡 امنیت سایبری دارد، اخیراً گزارشی با عنوان «نقشه راه: Data 3.0 در عصر #Lakehouse» منتشر کرده است. این گزارش با تکیه بر تجربه BVP در سرمایهگذاری بر برندهایی مانند Shopify، LinkedIn، Pinterest و Databricks، چشماندازی دقیق از نسل سوم زیرساختهای داده ارائه میدهد.
🔍 چرا Data 3.0 اهمیت دارد؟
مدیریت دادهها طی سه نسل دستخوش تحولات عظیمی شده است:
📦 نسخه اول - Data 1.0 (۱۹۷۰–۲۰۰۰):
✅ تمرکز بر پایگاههای داده رابطهای (Oracle، MySQL)
✅ استفاده از انبارهای دادهای
❌ محدودیت در مقیاسپذیری
❌ ناتوان در پردازش دادههای غیرساختاریافته
🌊 نسخه دوم - Data 2.0 (از ۲۰۱۰ به بعد):
✅ ظهور Hadoop و Spark برای پردازش دادههای متنوع و حجیم
✅ انعطافپذیری بیشتر
❌ باتلاق دادهای (Data Swamp) بهدلیل ضعف در کیفیت و حاکمیت
🚀 نسخه سوم - Data 3.0 (از ۲۰۲۰ به بعد):
✅ یکپارچگی
✅ پردازش لحظهای
✅ استفاده از هوش مصنوعی
📌 ابزارهای کلیدی: Lakehouse، Delta Lake، Iceberg، Hudi، خطوط لوله AI-driven
💡 معماری Lakehouse چیست و چرا انقلابی است؟
لیکهوس ترکیبی از قدرت Data Warehouse و انعطاف Data Lake است.
ویژگیهای کلیدی:
📌 پشتیبانی از دادههای ساختاریافته و غیرساختاریافته
📌 فرمتهای باز با قابلیتهای ACID، Time Travel، پردازش لحظهای
📌 کاهش افزونگی داده و وابستگی به Vendorها
این معماری پایهای برای توسعه ابزارهای تحلیلی و برنامههای AI در مقیاس بزرگ است.
🔮 چهار روند کلیدی در Data 3.0 به روایت BVP
1️⃣ خطوط لوله هوشمند و لحظهای
🛠 ابزارهای جدید: Prefect، Windmill، dltHub
⚙️ فناوریهای جریانی: Apache Flink، Kafka
⚡️ پلتفرمهای بلادرنگ مانند Chalk برای تصمیمگیری سریع
2️⃣ متادیتا بهعنوان منبع حقیقت
🛠 ابزارهایی مانند Datastrato، Acryl Data
💡 بهینهسازهایی مثل Flarion.io و Greybeam
3️⃣ تحول در موتورهای محاسباتی:
🛠 موتورهای سبک و سریع: DuckDB، ClickHouse، Daft
🌕 بسترهای Iceberg-native مثل Mooncake و Bauplan و RisingWave
4️⃣ ادغام مهندسی داده و نرمافزار:
🧩 ابزارهایی مانند dbt و Gable
🔄 یکپارچهسازی با CI/CD، نسخهسازی، تست خودکار
💸 فرصتهای سرمایهگذاری و نوآوری
BVP باور دارد که Data 3.0 فرصت بیسابقهای برای بنیانگذاران ایجاد کرده تا:
🔧 ابزارهای منبعباز و ابری جدید بسازند
🚀 موتورهای بهینهشده برای AI ارائه دهند
📊 راهحلهای هوشمند برای متادیتا خلق کنند
📌 جمعبندی : معماری Lakehouse نماد تحول در مدیریت دادههاست:
✔️ عملکرد بالا
✔️ تحلیل لحظهای
✔️ پشتیبانی از AI
✔️ مقیاسپذیری بالا
آینده از آن تیمهایی است که به جای مدیریت زیرساختهای پیچیده، بر خلق ارزش از دادهها تمرکز میکنند.
🏷 #Data3 #Lakehouse #AI #Metadata #StreamingData #DuckDB #Iceberg #DeltaLake #BVP #DataEngineering #ModernDataStack #RealTimeAnalytics #OpenSource #DataInfra #Startup #DataPlatform #VentureCapital #FutureOfData
👍2
معرفی Kedro 1.0 — فریمورکی حرفهای برای ساخت پروژههای دادهای و هوش مصنوعی 🚀
🔍 چالش اصلی:
در پروژههای دادهای واقعی، دادهها از منابع مختلف میآیند و مراحل متعددی باید طی شود. بدون چارچوبی منظم، کدها بینظم و غیرقابل نگهداری میشوند و همکاری تیمی دشوار میشود.
Kedro این مشکلات را اینطور حل میکند:
📂 تقسیم پروژه به بخشهای مستقل و قابل مدیریت
🔄 تعریف دقیق و قابل تکرار جریانهای کاری (Pipeline)
📚 مدیریت دادهها در یک سیستم منسجم به نام DataCatalog
🤝 استانداردسازی برای همکاری آسانتر تیمی
📊 ابزارهای بصری برای مشاهده و مدیریت اجرای پروژه
⚙️ امکان توسعه و سازگاری با ابزارهای مختلف
💡 ویژگیهای کلیدی Kedro 1.0:
نسخه ۱.۰ با بهبودهای فراوانی به شما قدرت میدهد تا پروژههای پیچیده را با اعتماد اجرا کنید و سریعتر توسعه دهید:
🔄 DataCatalog بازطراحی شده: مدیریت دادهها به شکلی سادهتر و قویتر
🧩 بهبود فضای نام (Namespace): گروهبندی و استفاده انعطافپذیرتر دادهها
🚀 بهبود رانرها: اجرای بهتر و پایدارتر جریانهای کاری
📚 مستندات نوین: راهنمایی آسان و بهروز برای شروع سریع
👁🗨 نمایش وضعیت خط لوله در Kedro Viz: نظارت بصری بر اجرای پروژه
🤖 آماده برای هوش مصنوعی نسل جدید: پشتیبانی از جریانهای کاری پیشرفته و AI مولد
👥 چه کسانی باید از Kedro استفاده کنند؟
- دانشمندان داده و مهندسان یادگیری ماشین که دنبال کدی قابل بازتولید و سازمانیافته هستند
- مهندسان داده که خطوط لوله دادهای پیچیده میسازند و مدیریت میکنند
- تیمها و سازمانهایی که میخواهند همکاری و هماهنگی پروژههای دادهایشان را بهبود دهند
- کسانی که وارد حوزه هوش مصنوعی مولد و پروژههای نوین دادهای میشوند
🌟 چرا Kedro 1.0 را انتخاب کنیم؟
با Kedro، پروژههای دادهای خود را به سطحی کاملاً حرفهای میبرید:
کدی منظم، قابل تست و مقیاسپذیر دارید که به رشد و تغییر پروژه کمک میکند و کار تیمی را سادهتر میکند.
📥 همین امروز شروع کنید!
Kedro ساده نصب میشود و جامعه بزرگی پشت آن است.
برای اطلاعات بیشتر و دریافت مستندات به kedro.org مراجعه کنید.
خلاصه در یک نگاه:
📂 ساختاردهی ماژولار پروژهها
🔄 تعریف و مدیریت جریانهای کاری
📚 DataCatalog پیشرفته
🤝 تسهیل همکاری تیمی
📊 ابزارهای نظارتی و بصری
⚙️ توسعهپذیری و سازگاری با ابزارهای نوین
🤖 آماده برای چالشهای آینده AI
#Kedro #DataScience #MachineLearning #DataEngineering #AI #OpenSource #Python #DataPipeline #MLOps #GenerativeAI
چهارسال پیش هم این پروژه را در سایت مهندسی داده معرفی کردیم :
https://lnkd.in/dbn5pBFH
در دنیای پیچیده داده و یادگیری ماشین، مدیریت پروژههای دادهای با کدهای پراکنده و مراحل متعدد چالش بزرگی است. Kedro با ارائه ساختاری منظم، به شما کمک میکند تا پروژههای خود را قابل توسعه، قابل تکرار و قابل اعتماد بسازید.
🔍 چالش اصلی:
در پروژههای دادهای واقعی، دادهها از منابع مختلف میآیند و مراحل متعددی باید طی شود. بدون چارچوبی منظم، کدها بینظم و غیرقابل نگهداری میشوند و همکاری تیمی دشوار میشود.
Kedro این مشکلات را اینطور حل میکند:
📂 تقسیم پروژه به بخشهای مستقل و قابل مدیریت
🔄 تعریف دقیق و قابل تکرار جریانهای کاری (Pipeline)
📚 مدیریت دادهها در یک سیستم منسجم به نام DataCatalog
🤝 استانداردسازی برای همکاری آسانتر تیمی
📊 ابزارهای بصری برای مشاهده و مدیریت اجرای پروژه
⚙️ امکان توسعه و سازگاری با ابزارهای مختلف
💡 ویژگیهای کلیدی Kedro 1.0:
نسخه ۱.۰ با بهبودهای فراوانی به شما قدرت میدهد تا پروژههای پیچیده را با اعتماد اجرا کنید و سریعتر توسعه دهید:
🔄 DataCatalog بازطراحی شده: مدیریت دادهها به شکلی سادهتر و قویتر
🧩 بهبود فضای نام (Namespace): گروهبندی و استفاده انعطافپذیرتر دادهها
🚀 بهبود رانرها: اجرای بهتر و پایدارتر جریانهای کاری
📚 مستندات نوین: راهنمایی آسان و بهروز برای شروع سریع
👁🗨 نمایش وضعیت خط لوله در Kedro Viz: نظارت بصری بر اجرای پروژه
🤖 آماده برای هوش مصنوعی نسل جدید: پشتیبانی از جریانهای کاری پیشرفته و AI مولد
👥 چه کسانی باید از Kedro استفاده کنند؟
- دانشمندان داده و مهندسان یادگیری ماشین که دنبال کدی قابل بازتولید و سازمانیافته هستند
- مهندسان داده که خطوط لوله دادهای پیچیده میسازند و مدیریت میکنند
- تیمها و سازمانهایی که میخواهند همکاری و هماهنگی پروژههای دادهایشان را بهبود دهند
- کسانی که وارد حوزه هوش مصنوعی مولد و پروژههای نوین دادهای میشوند
🌟 چرا Kedro 1.0 را انتخاب کنیم؟
با Kedro، پروژههای دادهای خود را به سطحی کاملاً حرفهای میبرید:
کدی منظم، قابل تست و مقیاسپذیر دارید که به رشد و تغییر پروژه کمک میکند و کار تیمی را سادهتر میکند.
📥 همین امروز شروع کنید!
Kedro ساده نصب میشود و جامعه بزرگی پشت آن است.
برای اطلاعات بیشتر و دریافت مستندات به kedro.org مراجعه کنید.
خلاصه در یک نگاه:
📂 ساختاردهی ماژولار پروژهها
🔄 تعریف و مدیریت جریانهای کاری
📚 DataCatalog پیشرفته
🤝 تسهیل همکاری تیمی
📊 ابزارهای نظارتی و بصری
⚙️ توسعهپذیری و سازگاری با ابزارهای نوین
🤖 آماده برای چالشهای آینده AI
#Kedro #DataScience #MachineLearning #DataEngineering #AI #OpenSource #Python #DataPipeline #MLOps #GenerativeAI
چهارسال پیش هم این پروژه را در سایت مهندسی داده معرفی کردیم :
https://lnkd.in/dbn5pBFH
❤2
از Postgres تا Lakehouse زنده در کمتر از یک ثانیه - نگاهی به Mooncake و استراتژی جسورانه Databricks
مدتها بود که پروژه Pg_mooncake رو زیر نظر داشتم تا ببینم کی به مرحله نهایی میرسه ، پروژهای نوآور که میخواست Postgres رو با Iceberg ترکیب کنه و دادههای تحلیلی و عملیاتی رو روی یک پایه مشترک بیاره.
و حالا… دیدم که Databricks این تیم خلاق رو هم خریداری کرده! درست مثل خرید قبلیشون یعنی Neon (نسخهی cloud-native از Postgres).
لینک خبر :
https://www.linkedin.com/posts/databricks_were-excited-to-announce-that-databricks-activity-7379138538652696576-2pbr
💡 اما Mooncake دقیقاً چی بود و چرا مهمه؟
به زبان ساده، Mooncake کمک میکنه دادههایی که در Postgres ذخیره میشن به کمک یک افزونه پستگرس که با rust نوشته شده، تقریباً بلافاصله و بدون نیاز به ابزارهای پیچیده، داخل یک لیکهوس با فرمت آیسبرگ یا دلتا ذخیره شده و برای تحلیل و گزارش های سنگین با انواع کوئری انجین ها مثل ترینو، استارراکز، اسپارک و حتی کلیکهوس آماده بشن.
با ترکیب Postgres و Iceberg و با استفاده از امکانات خود mooncake:
🔰 دادهها بهصورت زنده (real-time) همگام میشن حتی با آپدیت و حذف
🔰 تحلیلها با کمک DuckDB سریع انجام میشن،
🔰 و همهچی بدون پیچیدگی ETL یا کپیکاری، در همون لحظه قابل استفادهست.
یه جور پل بین ذخیرهسازی عملیاتی و تحلیل زندهست - دقیقاً همون چیزی که خیلی از شرکتها مدتهاست دنبالش بودن.
🎯 واقعاً مشخص نیست دقیقاً چه استراتژی بزرگی پشت این خریدهاست، اما چیزی که واضحه اینه که Databricks داره آینده پایگاههای داده Postgres-محور رو با هوش مصنوعی و تحلیل real-time بازتعریف میکنه.
👋 به تیم Mooncake تبریک میگم، و مشتاقم ببینم در ادامه چه اتفاقات بزرگی رقم میزنن!
شروع رسمی دوره پستگرس کاربردی در مدرسه مهندسی داده سپهرام:
https://sepahram.ir/courses/
#Databricks #Mooncake #Postgres #Iceberg #Lakehouse #OLTP #AI #Lakebase #DataEngineering #OpenSourc
مدتها بود که پروژه Pg_mooncake رو زیر نظر داشتم تا ببینم کی به مرحله نهایی میرسه ، پروژهای نوآور که میخواست Postgres رو با Iceberg ترکیب کنه و دادههای تحلیلی و عملیاتی رو روی یک پایه مشترک بیاره.
و حالا… دیدم که Databricks این تیم خلاق رو هم خریداری کرده! درست مثل خرید قبلیشون یعنی Neon (نسخهی cloud-native از Postgres).
لینک خبر :
https://www.linkedin.com/posts/databricks_were-excited-to-announce-that-databricks-activity-7379138538652696576-2pbr
بهنظر میرسه دیتابریکز داره با قدرت وارد فضای Lakehouse + OLTP + AI میشه. چیزی که خودشون اسمش رو گذاشتن Lakebase؛ پایگاهدادهای مبتنی بر Postgres که برای Agentهای هوش مصنوعی بهینهسازی شده و عملاً نیاز به ETL رو از بین میبره.
💡 اما Mooncake دقیقاً چی بود و چرا مهمه؟
به زبان ساده، Mooncake کمک میکنه دادههایی که در Postgres ذخیره میشن به کمک یک افزونه پستگرس که با rust نوشته شده، تقریباً بلافاصله و بدون نیاز به ابزارهای پیچیده، داخل یک لیکهوس با فرمت آیسبرگ یا دلتا ذخیره شده و برای تحلیل و گزارش های سنگین با انواع کوئری انجین ها مثل ترینو، استارراکز، اسپارک و حتی کلیکهوس آماده بشن.
با ترکیب Postgres و Iceberg و با استفاده از امکانات خود mooncake:
🔰 دادهها بهصورت زنده (real-time) همگام میشن حتی با آپدیت و حذف
🔰 تحلیلها با کمک DuckDB سریع انجام میشن،
🔰 و همهچی بدون پیچیدگی ETL یا کپیکاری، در همون لحظه قابل استفادهست.
یه جور پل بین ذخیرهسازی عملیاتی و تحلیل زندهست - دقیقاً همون چیزی که خیلی از شرکتها مدتهاست دنبالش بودن.
🎯 واقعاً مشخص نیست دقیقاً چه استراتژی بزرگی پشت این خریدهاست، اما چیزی که واضحه اینه که Databricks داره آینده پایگاههای داده Postgres-محور رو با هوش مصنوعی و تحلیل real-time بازتعریف میکنه.
👋 به تیم Mooncake تبریک میگم، و مشتاقم ببینم در ادامه چه اتفاقات بزرگی رقم میزنن!
شروع رسمی دوره پستگرس کاربردی در مدرسه مهندسی داده سپهرام:
https://sepahram.ir/courses/
#Databricks #Mooncake #Postgres #Iceberg #Lakehouse #OLTP #AI #Lakebase #DataEngineering #OpenSourc
Linkedin
Databricks Acquires Mooncake Labs to Boost Lakebase | Databricks posted on the topic | LinkedIn
We’re excited to announce that Databricks has acquired Mooncake Labs to accelerate the vision of Lakebase, a new category of OLTP database built on Postgres and optimized for AI agents!
AI agents are transforming application development, and traditional…
AI agents are transforming application development, and traditional…
👍3😱1