Ivan Begtin
9.34K subscribers
2.31K photos
4 videos
109 files
5.01K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email [email protected]

Ads/promotion agent: @k0shk
Download Telegram
В рубрике полезных ссылок про данные, технологии и не только:
- DTAI Sports Analytics Lab лаборатория в бельгийском университете KU Leuven посвящённая спортивной аналитике и футболу в частности. Несколько инструментов и много публикаций о предсказании результатов футбольных матчей с помощью машинного обучения
- Kicking the Tires on CedarDB's SQL обзор CedarDB, это такая инновационная база данных создаваемая в TUM и совместимая с Postgres. О ней полезно читать для понимания как разработка современных реляционных баз ведётся и сложности в оптимизации запросов
- Gravitino новый геораспределенный каталог метаданных с открытым кодом, заявлено много чего, но надо смотреть подробнее. Это не из тех каталогов которые создаются для документирования и комплаенс с контролем перс данных, а из тех каталогов которые позволяют централизовано управлять озерами и хранилищами, например, на Iceberg.
- quarkdown синтаксис и инструмент на базе Markdown для подготовки книг/статей/больших текстов. По сути под замену Latex и с ним же его и сравнивают. Наиболее близкая альтернатива ему это Typst созданный с теми же целями
- DataHub Secures $35 Million Series B о том что DataHub, создатели одноимённого каталога метаданных, подняли $35m инвестиций на применение ИИ для управления метаданными. Учитывая что DataHub сильно просел по разработке в сравнении с OpenMetadata - это скорее хорошая новость.

#opensource #analytics
62
Как в мире публикуют геоданные? Крупнейший коммерческий игрок - это компания ArcGIS с их облачными и корпоративными продуктами. В России все активно импортозамещаются на NextGIS, есть и другие коммерческие ГИС продукты и онлайн сервисы.

Однако в мире открытого кода наиболее популярные гео каталога данных - это Geonetwork, GeoNode и, с некоторым допущением, GeoServer.

Geonetwork - это OGC совместимый каталог георесурсов, включая файлы, внешние ссылки. Его активно применяют в Латинской Америке и Евросоюзе, например, EEA geospatial data catalogue, также Geonetwork хорошо расширяется метаданными и используется в Европейской инициативе INSPIRE по публикации системно значимых геоданных странами участниками ЕС. Geonetwork правильнее всего рассматривать как поисковик и агрегатор. В реестре каталогов данных Dateno 568 инсталляций Geonetwork

GeoNode - это продукт наиболее приближенный именно к каталогу данных. Его используют для публикации данных вручную и он поддерживает множество стандартов доступа к данным, включая DCAT для порталов открытых данных. Например, его использует Правительство Казахстана как Геопортал НИПД. В реестре каталогов Dateno 295 записей о каталогах данных на базе Geonode.

И, наконец, Geoserver - это один из наиболее популярных open source геопродуктов, используется повсеместно для публикации слоёв карт и других данных как OGC сервисов. В реестре Dateno 1111 таких серверов. Главный недостаток - это отсутствие/неполнота метаданных, которые чаще описываются в надстройке поверх данных внутри Geoserver.

В России всего 22 инсталляции на базе этих продуктов, большая часть из них недоступна с IP адресов не из российских подсетей. Для сравнения, в странах ЕС их более 600, не считая других геопорталов.


#opendat #datacatalogs #opensource #data #geodata #geonetwork #geonode #geoserver
👍431
В рубрике интересных стартапов про данные и аналитику Pandas AI [1] открытый, но не свободный (!) продукт по подключению ИИ к анализу датафреймов в Pandas. К конкретному датафрейму можно формулировать вопросы/запросы и получать структурированные и визуальные ответы.

Идея интересная, поддерживает стартап Y-Combinator, но лично я его рекомендовать к использованию не буду и вот почему:
1. Это не local-first продукт, для работы обязательно регистрироваться в их облачном сервисе и получать ключ.
2. Много вопросов с защитой данных. Они проходят двух провайдеров - собственно Pandas AI и выбранной облачной LLM. Причём с облачной LLM как прямых никаких отношений нет, при утечке данных повлиять на это сложно.

В остальном идея, безусловно, неплохая, но в облаке только как часть решения. Условно если у меня всё в Azure, GCS или в AWS то не проблема подключить API для ИИ передавать данные, они и так там. А какой-то левый внешний сервис непроверенный провайдер - это никуда не годится.

Ссылки:
[1] https://github.com/sinaptik-ai/pandas-ai

#opensource #ai #pandas #dataanalytics
🔥43
В рубрике как это устроено у них и на сей раз не про данные а про государственного вестоношу в Германии Bundes Messenger [1] это специальное приложение для устройств Apple и Android разработанное по заказу европейским подрядчиком T-Systems по заказу BWI GmbH (агентству цифры и инноваций при Минобороны Германии).

В чем его особенности:
1. Он предназначен только для госслужащих и у него сейчас относительно немного пользователей, 5+ тысяч для приложения на Android
2. Приложение полностью с открытым кодом [2] опубликованным в рамках инициативы OpenCoDE
3. Основан на открытом протоколе обмена Matrix [3] с серверами находящими под управлением BWI.
4. Изначально выросло из приложения BwMessenger созданное для германской армии и имеющее более 100 тысяч пользователей.
5. Это просто система сообщений без чего-либо про юридическую значимость, госуслуги или обмен документами.
6. Нигде нет явно выраженных планов распространять его или что-то на его основе как систему обмена сообщений для самих граждан.

Ссылки:
[1] https://messenger.bwi.de/bundesmessenger
[2] https://gitlab.opencode.de/bwi/bundesmessenger/info
[3] https://matrix.org/

#opensource #germany #messenger
4👍42
Смотря на современные приложения, неважно, с открытым кодом или закрытым, я всё более прихожу к их классификации по типам интеграции с облаками и работе без интернета.

И эта классификация выглядит вот так:
- cloud-only - приложение не работает без облачного (SaaS) сервиса и превращается в кирпич при отсутствии интернета или сетевых ограничениях
- cloud-first - приложение сильно зависит от облачного сервиса, много теряет при его отсутствии, но что-то может делать и без него
- local-first - приложение которое всё может делать локально, но какие-то функции делает лучше при наличии доступа к внешним сервисам, включая облачные
- local-only - приложение не предусматривающее никого использования внешних сервисов. Для применения его с облачными и SaaS сервисами пользователь должен сделать набор осознанных действий явным образом

Относится к этому можно как то что cloud-only продукты - это то что является одной из приоритетных бизнес моделей у современных стартапов, в том числе с открытым кодом и любое продвижение их это как бесплатный маркетинг продуктов с зависимостью (там всегда подписочная модель).

А local-only - это выбор параноиков и фанатиков. Параноики те кто эксплуатируют ПО в средах без Интернета, а фанатики бывают разные, но в основном те кто категорически ненавидят бигтехи и AI-техи.

Всё остальное - это шкала градаций между ними и относится к этому стоит как то что local-only подход всё более дискомфортен для разработчиков ПО. По разным причинам: низкие доходы, сложности сопровождения, ограничения в выборе инструментов разработки и тд. А cloud-only идёт против интересов квалифицированного пользователя работа которого всё более зависит от облачных сервисов которыми он управляет всё менее.

По моему личному опыту все лучшие продукты сейчас - это local-first. Условно когда я могу подключить приложение к локальной ИИ модели через Ollama или к облачной одного из провайдеров. Задача возникающая не абстрактно, а из реального кейса разработчиков одного из инструментов работы с данными и обсуждающих режим работы local-only поставку языковой модели вместе с продуктом.

Всё это очень важно когда речь идёт о каких-либо продуктах с открытым кодом и оценке зависимости от внешних сервисов собственной инфраструктуры.

#data #opensource #clouds
👍191🔥1🤨1
В рубрике как это устроено у них официальные сайты метеорологических служб 20 африканских стран работают на одном стандартизированном продукте с открытым кодом Climweb [1], например, это метеослужбы Бенина [2] и Нигера [3] и многих других, а также планируется что ещё в 6 странах метеослужбы перейдут на это ПО.

В чём его особенность:
- открытый код на базе Python + Wagtail
- совместная разработка офиса WMO и NORCAP, это норвежский центр по гуманитарному развитию при Правительстве Норвегии
- унифицированное, правда, недокументированное API
- под лицензией MIT

Все эти порталы работают в связке с общей инфраструктурой WMO и провайдерами данных, в ряде стран установлены, также, сервисы Wis2Box собирающие данные со станций наблюдения и отдающие их по стандартным протоколам OGC для геоданных. Про Wis2Box я ранее писал и, похоже, их распространение сильно продвинулось на последние 1.5 года. Как каталоги данных они очень невелики, а как открытые климатические данные любопытны.

Ссылки:
[1] https://github.com/wmo-raf/climweb
[2] https://www.meteobenin.bj/
[3] https://www.niger-meteo.ne/

#opendata #api #climate #opensource
👍73🍌1
Полезное чтение про данные, технологии и не только:
- I feel open source has turned into two worlds [1] автор пишет про то как классический open source мир столкнулся с корпоративным и это ещё один водораздел между теми кто исповедует открытость как ценность и теми кто зарабатывает на этом деньги.
- Can A.I. Quicken the Pace of Math Discovery? [2] могут ли ИИ помощники усилить и ускорить научные открытия в высшей математике ? Тема очень и очень непростая, но в США DARPA запускают инициативу в которой хотят это попробовать.
- The Brute Squad [3] автор поёт оды вайб-кодингу, насколько оправданные - вот в чём вопрос. Но прочитать стоит

Ссылки:
[1] https://utcc.utoronto.ca/~cks/space/blog/tech/OpenSourceTwoWorlds
[2] https://www.nytimes.com/2025/06/19/science/math-ai-darpa.html
[3] https://sourcegraph.com/blog/the-brute-squad

#readings #ai #opensource
👍94
Foursquare официально анонсировали [1] SQLRooms [2]. Это инструмент для построения дашбордов в основе которого DuckDB и интегрированный AI ассистент.

Можно вживую его посмотреть в интерфейсе куда можно загрузить данные и посмотреть запросы к ним [3] и в демо AI аналитика [4]

Про SQLRooms я ранее писал, но теперь он анонсирован официально и я так понимаю что весьма активно развивается.

А ещё они следуют ровно той концепции о которой я ранее писал - Local-first [5]

Ссылки:
[1] https://medium.com/@foursquare/foursquare-introduces-sqlrooms-b6397d53546c
[2] https://sqlrooms.org
[3] https://query.sqlrooms.org/
[4] https://sqlrooms-ai.netlify.app/
[5] https://github.com/sqlrooms/sqlrooms

#opensource #dataanalytics #dataengineering #duckdb
9👍3
DataChain [1] хранилище для AI датасетов с неструктурированными данными вроде изображений, видео, аудио, документов. Открытый код, лицензия Apache 2.0, стремительно набирает пользовательскую базу. Опубликовано одноимённым стартапом. Для хранения используют S3, какой-то отдельный язык запросов я не увидел.

За проектом стоит команда которая делала аналог Git'а для данных DVC, а то есть проблематику они должны понимать хорошо.

В коммерческом сервисе обещают всякие ништяки вроде каталога данных, прослеживаемость данных, интерфейс просмотра мультимодальных данных и тд. Но это то на что интересно посмотреть, а так то может быть применение и только open source продукту.

Ссылки:
[1] https://github.com/iterative/datachain

#opensource #dataengineering
53
Для тех кто работает с веб архивами я обновил инструмент metawarc [1] это утилита для извлечения метаданных из файлов WARC (формат файлов веб архива).

Инструмент нужен для тех кто извлекает метаданные и файлы из WARC файлов, например, можно скачать WARC файл архива сайта Минспорта за 2019 г. , он небольшой, всего около 1ГБ, проиндексировать его и извлечь все PDF файлы, или файлы MS Word, или сразу извлечь все метаданные из документов и изображений.

Штука которая полезна для OSINT задач анализа сайтов организаций, но тема OSINT меня интересует мало.

А основное применение - это анализ больших архивов и организация поиска по ним и поиск интересных данных.

Когда-то давно я делал эту штуку и через неё находил массовое использование пиратского офисного ПО на российских госсайтах, но это было давно и уже давно малоинтересно. Внутри там использовалась база sqlite и при индексации всех метаданных размер этой базы мог достигать до 20% от размера WARC файла. То есть для коллекции в 1ТБ WARC'ов это получалось до 200GB база. А это совсем никуда не годится. После переписывания всё на связку DuckDB + Parquet после индексации объём уменьшился на порядки. Для WARC файла в 4.5ГБ извлеченные метаданные занимают 3.5МБ. А это 0.07%. Реальное сжатие в 285 раз (!), не говоря уже о ускорении операций по анализу и извлечению документов.

Ссылки:
[1] https://github.com/datacoon/metawarc

#opensource #webarchives
🔥1031
В продолжение про инструмент metawarc, о котором я ранее писал и то зачем он нужен и может применяться. Вот у меня как маленькое цифровое хобби есть архивация сайтов исчезающих и иных ценных ресурсов, в том числе российских госорганов. Всё оно сфокусировано на проект Национальный цифровой архив ruarxive.org и сообщество в ТГ.

И вот несколько недель назад закончилась архивация сайта Росстата и его территориальных управлений и вот вам некоторое количество цифр которые дадут более-полную-картину.

1. Общий архив сайтов Росстата и территориальных органов - это 330ГБ WARC файлов в сжатом виде (в разжатом виде около 1.1ТБ)
2. Индекс созданный с помощью metawarc занимает 144МБ (0.04% от объёма WARC файлов). Без сбора метаданных из изображений, PDF и файлов MS Office, только записи, заголовки и ссылки. Но поскольку задач OSINT тут нет, то и остальные метаданные не собирались. Впрочем и их объёмы были бы сравнимого размера.
3. На сайтах Росстата опубликовано в общей сложности:
- 64 020 файлов XLSX
- 17 562 файлов XLS
- 14 410 файлов RAR и ZIP внутри которых могут быть ещё десятки таблицы в XLS/XLSX (а могут и не быть, не во всех)
4. Итого если даже только на основе статистики Росстата создавали когда-то портал data.gov.ru там было могли быть десятки тысяч, если не хороших, то совершенно точно используемых аналитиками и исследователями данных.
5. То как оно сейчас на сайте Росстата и его террорганов опубликовано - это, конечно, ужас-ужас. Просто ну очень плохо, нет ни единого поиска, ни унифицированных метаданных и форматов, ни единой группировки и тд. Чем Росстат занимался последнее десятилетие я даже не представляю себе, вернее представляю, но не комментирую.
6. Забегая вперед и отвечая на незаданный вопрос, нет, не у всех статслужб в мире всё так же. В таком состоянии дела обычно только у статслужб развивающихся стран.
7. Возвращаясь к содержанию сайтов Росстата. Преимущественно публикации на них - это PDF файлы и таблички в HTML. Всего около 152 тысяч PDF файлов. Даже если предположить что какая-то их часть - это приказы и иные документы без данных, но разного рода статистика составляет львиную их часть.

Архивы сайтов могут быть довольно таки ценным источником данных, но для их извлечения надо приложить существенные усилия. Особенно когда они фрагментированы так как это произошло на сайте Росстата. Однако учитывая что многие сайты закрываются и исчезают и часто от них всё что остаётся - это как раз веб-архивы, то только из этих веб архивов и можно извлекать данные и документы.

#opendata #opensource #webarchivesё
👍43🔥3😢1🙏1
Полезные ссылки про данные, технологии и не только:

Открытый код

- The Data Engineering Handbook большая подборка ресурсов для дата инженеров: блоги, подкасты, книги, компании, ключевые продукты и тд. Полезно будет, в первую очередь, начинающим дата инженерам для быстрого погружения в профессию
- RustFS высокопроизводительная альтернатива Minio, для создания облачных хранилищ файлов доступом по S3 протоколу. Написан на языке Rust, лицензия Apache 2.0, декларируют производительность вдвое выше чем у Minio.
- STORM: Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking - исследовательский проект (оттого и такое длинное странное название) по генерации статей в стиле Википедии на заданную тему. Можно попробовать его на практике на storm.genie.stanford.edu.
- Harper бесплатный и открытый продукт для проверки грамматической проверки для английского языка. Ключевое - это то что не требует подключения к внешнему сервису, можно развернуть свой language server и проверки делать оффлайн. Полезно для всех кто озабочен приватностью или просто не хочет платить за сервисы вроде Grammarly.
- Easytier открытый код и сервис для быстрого развертывания децентрализованных сетей VPN. Прямой конкурент и альтернатива Tailscale. Сделан в Китае, распространяется под лицензией LGPL. Главное не путать с теми VPN что используются для обхода цензуры, этот сделан именно в классическом понимании VPN - для организации частной защищённой сети со своими устройствами.
- Bitchat новая децентрализованная альтернатива облачным мессенжерам. Была представлена Джеком Дорси, основателем Twitter'а, работает через Bluetooth и напоминает похожие проекты вроде Firechat (не знаю жив ли он ещё).

ИИ
- Half of Managers Use AI To Determine Who Gets Promoted and Fired опрос от сервиса Resume Builder об использовании ИИ менеджерами для оценки сотрудников и других задач. Если кратко, то используют большинство, многие уже всегда работают с ИИ, вплоть до принятия решений о повышении или увольнении сотрудника на основе оценки ИИ помощника
- RAPIDS Adds GPU Polars Streaming, a Unified GNN API, and Zero-Code ML Speedups NVIDIA продолжают развивать Polars и другие инструменты с открытым кодом для выполнения задач по обработке данных в GPU. Это и про открытый код и про применение Polars вместо Pandas для большей части научных тетрадок

Разное
- Apyhub очередной сервис каталогизации API, честно говоря непонятно зачем нужный. В этом рынке я знаю всего два продукта обретшие успех. Это OpenRouter для ИИ и RapidAPI как маркетплейс для API. Рынок устроен так что посредники ценны только если они приносят много реальных пользователей. К примеру, если Яндекс делает API маркетплейс - это сработает, а в остальных случаях почти наверняка нет.
- The One Trillion Row challenge with Apache Impala тест Apache Impala, базы с открытым кодом, на 1 триллионе строк. Я, честно говоря, был уверен что Apache Impala уже мертвый продукт, а там ещё какая-то жизнь происходит.
- Yet another ZIP trick автор покопался в спецификации ZIP файлов и поманипулировал метаданными внутри так что некоторые парсеры ZIP файлов видят одно содержимое, а другие другое. Ждем волны вирусов прячущихся внутри ZIP'ов (шутка).

#opensource #ai #api #rdbms
👍633😱1
Для тех кто подумывает опубликовать данные и ориентируется на пользователей которые:
a) Хотят смотреть на структуру данных и искать по ним
б) Немного умеют в SQL

Есть достаточно давний открытый инструмент datasette. Он позволяет опубликовать базу SQLite так чтобы над ней был удобный веб интерфейс с возможностью просматривать содержимое и делать SQL запросы.

Инструмент реально простой, умеет экспортировать JSON и CSV, даёт API и очень простой стандартизованный интерфейс расширяемый разными надстройками. Его довольно часто используют госорганы в Европе и в разных некоммерческих проектах чтобы сделать какие-то CSV файлы доступными. Там и инструкции все начинаются с того что "возьмите Ваши CSV файлы и преобразуйте их в базу SQLite".

Для тех кто любит использовать открытый код для того чтобы делиться данными - это полезный инструмент.

#opendata #opensource #datatools #data
👍102
В рубрике полезных инструментов для работы с данными, много лет назад я столкнувшись с тем что регулярно надо откуда-то доставать из API датасеты и с тем что каждый раз много мороки писать скрипты самому и ещё дольше просить кого-то из разработчиков это делать, я написал утилиту apibackuper для скрейпинга через декларативное программирование в конфиг файлах.

Изначально она была для архивации данных в рамках Национального цифрового архива @ruarxive, но оказалась очень удобной во всех смыслах. К слову и в Dateno часть сборщиков метаданных работают на базе apibackuper

Как это работает? Точки подключения к API описываются в специальном конфигурационном файле в расширением cfg в формате configparser.

После запуска утилита последовательно делает запросы к API, сохраняет результаты в виде JSON файлов внутри ZIP контейнера и позволяет потом экспортировать результаты в формат построчного JSON (NDJSON).

Кроме простого перебора выгрузки из API, там же есть режим когда после перебора точки подключения с поиском/листанием данных нужно запросить карточку каждого объекта и/или скачать ассоциированные с данными файлы.

Оказалось очень удобным инструментом, сам пользуюсь им регулярно и надо бы его давно обновить, но руки не доходят потому что "и так работает".

Если бы я делал его сейчас то:
1. Использовал бы JSON файлы сжатые ZST вместо ZIP контейнера
2. Вместо конфиг файлов использовал бы YAML (это несложно, кстати)
3. Добавил бы систему расширений
4. Добавил бы многопоточный режим выгрузки
5. Добавил бы библиотеку шаблонов для подключения к разным типовым API.

И тд, но, в целом, и без этого всё работает. На скриншоте пример конфиг файла для выгрузки метаданных и файлов из системы "Артефакт" (ar.culture.ru) Минкультуры РФ и то как эти данные выглядят в самом API.

#opensource #datatools #data #scraping #API #digitalpreservation
142🔥1
Новый инструмент Vanna для Text-to-SQL операций. Под MIT лицензией, обучается на данных, а потом позволяет делать SQL запросы текстовым промптом. Поддерживает множество облачных и локальных векторных хранилищ, больших языковых моделей и баз данных.

Выглядит интересным со всех сторон: лицензия, возможности и тд.

До идеала нехватает ещё поддержки синтаксиса NoSQL (Elasticserch, MongoDB и др.)

Надо пробовать на практике.

#opensource #ai #dataengineering #datatools #dataanalytics
👍41
Полезные ссылки для работы с данными, технологиями и не только:
- DocsGPT и LocalGPT два похожих продукта для извлечения знаний и чата с локальными документами. Первый под лицензией MIT, второй под Apache 2.0. Поддерживают множество форматов документов, работают с облачными и локальными моделями ИИ. Какой лучше не знаю, надо пробовать оба продукта.
- Markitdown утилита от Microsoft по преобразованию чего угодно в формат markdown. Поддерживает документы MS Office, PDF, HTML, аудио и изображения и многое другое.
- AI Dataset generator генератор синтетических наборов данных с помощью ИИ. Умеет подключаться к разным LLM и интегрировано с инструментом визуализации Metabase. Открытый код, лицензия MIT
- gt-extras расширение для пакета great-tables для Python позволяющее рисовать красивые таблицы в Python в средах научных тетрадок Jupyter или в Quatro из фреймов данных Pandas и Polars. Удобное для всех кто занимается аналитикой на данных
- OpenAIRE changelog хороший пример версионирования и журнала большого открытого дата-продукта.

#opensource #data #datatools
👍6🔥42
Знаете ли Вы что... существует спецификация /llms.txt в виде сайта [1] с документацией. Спецификация - это что-то вроде карты сайта (sitemap) совмещенного с подробной документацией, но отформатированное в Markdown и приспособленное для упрощённого поглощения с помощью LLM.

Мне казалось что очень хотеть чтобы LLM съел твой контент - это странное желание, но для кого-то, видимо важное, и десятки сайтов спецификацию поддерживают [2], например, такой файл доступен у Sourcegraph [3] и у Bitcoin.com [4] и у LMStudio [5]

В большинстве случаев это документация к продуктам, иногда весьма и весьма детальная.

В отличие от MCP вокруг это спецификации хайп не наблюдается, но знать о ней стоит всем кто документацию к своим продуктам создаёт.

Ссылки:
[1] https://llmstxt.org/
[2] https://llmstxt.site/
[3] https://sourcegraph.com/docs/llms.txt
[4] https://www.bitcoin.com/llms.txt
[5] https://lmstudio.ai/llms.txt

#opensource #standards #ai
👍7
Я очень скоро прекращу так часто упоминать российский портал открытых данных, всё таки реально применения у опубликованных там данных очень немного и одно из них более-менее не бесполезное - это обучение алгоритмов выявления семантических / смысловых типов данных. Это когда поле/колонка таблицы аннотируется пометками о том что там реально содержится. Я в своё время создавал инструмент metacrafter это такая довольно продвинутая штука с большой базой этих самых семантических типов и многое из типов там имеет реальное отношение к российским данным, всё таки русскоязычные/российские наборы данных были для меня в большей доступности долгое время.

Сейчас я metacrafter натравил на ранее скачанные из новой версии data.gov.ru наборы данных. И вот первые результаты по популярным классам данных.

1. Всего выявлено 13334 колонки с 76 семантическими типами (dataclass)
2. Более всего в наборах данных упоминаются наименования организаций, адреса, наименования в принципе (чего либо), email'ы, ссылки, даты, телефоны, полные ФИО, названия регионов и так далее.
3. Геоданные встречаются в адресах (1429 случаев), долготе (212 случаев), широте (189 случаев). Почему числа долгот и широт не совпадают я не разбирался, но в целом выходит что адреса есть в от 10 до 20% всех датасетов,
3. Данных по юрлицам и ИП с одной стороны невелики, около 10% по частоте нахождения кодов inn, ogrn, ogrn_ogrnip, а с другой, наименования организаций повсеместны. Скорее всего дело в огромном числе административных данных которые органы публикуют про себя, вроде своих адресов местонахождения или вакансий.
4. Финансовых данных практически нет. Встречаемость кодов КБК, кодов бюджетов и тд минимальна.
5. Есть какое-то число ложных срабатываний по названиям полей и типовым шаблонам, вроде определение кодов ОКПД как адресов IPv4, но это минимально.

Какие выводы:
1. Смысловые - содержание data.gov.ru по прежнему бесполезно. Я напомню что все опубликованные там данные умещаются в один 100 мегабайтный ZIP архив
2. Технические - metacrafter неплохо разбирает российские коды, для чего он и писался.

А для общего просвещения добавлю скриншот с портала открытых данных Сингапура где используя подход похожий с тем что я делал с metacrafter'ом добавили возможность фильтрации датасетов по типам полей с данными. Их там пока всего 6, но тем не менее.

Вот это можно назвать полезным развитием портала открытых данных, а не "хихикающий голосовой помощник" который на data.gov.ru отключили почти сразу после запуска.

P.S. Для тех кто хочет изучить самостоятельно, по ссылке meta.zip содержит данные о всех выявленных семантических типах в датасетах. Внутри файл JSON lines сгенерированный metacrafter'ом и небольшой файл detected_dataclasses.csv полученный из этих результатов, содержащий перечень всех идентифицированных семантических типов данных, то что я привел на скриншоте.

#opendata #opensource #datacatalogs #russia
75🤣5😢2💯1
Полезные ссылки про данные, технологии и не только:
- DuckDB XML Extension - расширение для DuckDB для парсинга XML/HTML, пока не пробовал и интересно как он сможет съесть XML в пару пару десятков гигабайт, но выглядит полезно
- remote-jobs - репозиторий с огромным числом IT компаний имеющих вакансии для дистанционной работы. Некоторые компании remote-only, без офисов, в некоторых гибридный подход, в любом случае список полезный для тех кто ищет работу дистанционно
- Embedding User-Defined Indexes in Apache Parquet Files - для тех кто хочет поглубже разобраться с тем что такое Parquet, разбор реализации специализированного индекса внутри Parquet файлов.
- Rethinking CLI interfaces for AI у автора рефлексия о переосмыслении подхода к созданию и развитию утилит командной строки в контексте MCP и LLM. Текст довольно короткий, но здравый
- Edit перевыпуск древнего редактора Edit для MS-DOS переписанного на Rust под множество платформ. Для тех кого пробивает на ностальгию, но у меня лично по Edit'у никакой ностальгии не осталось, он мне не нравился ещё тогда;)

#opensource #ai #datatools
👍732🔥1
Стандарты работы с данными о которых вы могли ничего ранее не слышать:
- Oxford Common File Layout (OCFL) [1] спецификация описывающая способ хранения цифровых объектов независимо от использующего приложения с прицелом на долгосрочное хранение и использование. Используется, преимущественно, в академических проектах хранения цифровых объектов [2]
- Research Object Crate (RO-Crate) [3] "легковесная" спецификация для упаковки исследовательских данных вместе с метаданными. Отличается большим числом разных профилем под разные научные дисциплины [4]. Стандарт уже довольно зрелый, активно применяется во многих исследовательских проектах.
- The Open Data Product Standard (ODPS) [5] открытый стандарт описания дата продуктов из проекта Bitlol при Linux Foundation. Судя по спецификации всё ещё сыровато [6] и сама подача стандартов мне не очень нравится, я лично больше предпочитаю читать их в W3C стиле, но тем не менее, спецификаций на дата продукты как дата продукты мало. Текущая версия 0.9, явно ещё будет меняться
- The BagIt File Packaging Format (BagIt) [7] стандарт хранения цифровых объектов, в том числе данных, от библиотеки Конгресса США. В 2018 году его приняли как RFC 8493, но и до этого он давно существовал. Стандарт OCFL создавался как доработка BagIt поскольку в BagIt не было предусмотрено версионирование.
- FAIR4ML Metadata Schema [8] спецификация метаданных для описания моделей для машинного обучения, включая расширение для Schema.org. В основе спецификация для публикации кода Codemeta [9] тоже в виде расширения для Schema.org

Ссылки:
[1] https://ocfl.io
[2] https://github.com/OCFL/spec/wiki/Implementation
[3] https://www.researchobject.org/ro-crate/
[4] https://www.researchobject.org/ro-crate/profiles
[5] https://bitol.io/announcing-odps-major-step-toward-standardizing-data-products/
[6] https://github.com/bitol-io/open-data-product-standard/tree/main/docs
[7] https://datatracker.ietf.org/doc/html/rfc8493
[8] https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/index.html
[9] https://codemeta.github.io/

#openstandards #opensource #readings
8👍2🔥2