В продолжение размышлений о поиске геоданных и связанных с этим сложностей. Я ранее писал про GeoSeer, единственный известный мне поисковик геоданных в мире, но и он сравнительно небольшой. А вот в качестве альтернатив ему выступают уже не поисковики, а каталоги георесурсов. В первую очередь поисковики в экосистеме ArcGIS по их каталогам открытых данных и георесурсов и некоторое, небольшое число альтернатив.
Например, Spatineo Directory [1] от финских геоконсалтеров Spatineo. Там более 87 тысяч георесурсов, в виде точек API по стандартам WFS, WMS, WMTS, но без сбора информации о слоях, поэтому это не поисковик, а именно каталог. Его существенный минус в то что более менее там систематизированы только точки API из развитых стран.
Другой, неожиданно, государственный проект это FGDS Status Checker [2] гигантский каталог геовебсервисов созданный как сервис проверки их доступности. Список вебсервисов там огромный, но почти полностью ориентированный на США и почти не охватывающий морские территории. Есть подозрение что Spatineo делали свой каталог с оглядкой именно на этот продукт, поскольку функции схожи.
Но ещё больше каталогов которые прекратили своё существование. К примеру WFS Geodata Catalog от германского GeoClub. Сейчас можно найти только скриншот.
Ещё был Pyxis crawler с каталогом из 29+ тысяч датасетов, вот он ближе к GeoSeer, но индексировал всего 1572 источника и его тоже больше нет. Тоже остался тоже скриншот.
И был ещё такой поисковик Geometa, но теперь даже его скриншот найти оказалось непросто.
Фактических попыток систематизировать и сделать доступными геоданные и геосервисы было много. Можно сказать что у Dateno тоже есть подзадача в части геоданных.
В каталоге Dateno сейчас 4.4 миллиона наборов геоданных извлеченных из 3127 геопорталов. При этом в реестре Dateno всего 5955 геопорталов и после индексации оставшихся объём геоданных существенно вырастет, кроме того много геоданных в других типах дата каталогов: порталах открытых данных, научных репозиториях и тд., это тоже добавит число геоданных.
Но пока приходится держать в голове что в части геоданных относительно сравнимой референсной базой является GeoSeer.
Ссылки:
[1] https://directory.spatineo.com
[2] https://statuschecker.fgdc.gov
#opendata #geodata #datasets #datacatalogs #dateno
Например, Spatineo Directory [1] от финских геоконсалтеров Spatineo. Там более 87 тысяч георесурсов, в виде точек API по стандартам WFS, WMS, WMTS, но без сбора информации о слоях, поэтому это не поисковик, а именно каталог. Его существенный минус в то что более менее там систематизированы только точки API из развитых стран.
Другой, неожиданно, государственный проект это FGDS Status Checker [2] гигантский каталог геовебсервисов созданный как сервис проверки их доступности. Список вебсервисов там огромный, но почти полностью ориентированный на США и почти не охватывающий морские территории. Есть подозрение что Spatineo делали свой каталог с оглядкой именно на этот продукт, поскольку функции схожи.
Но ещё больше каталогов которые прекратили своё существование. К примеру WFS Geodata Catalog от германского GeoClub. Сейчас можно найти только скриншот.
Ещё был Pyxis crawler с каталогом из 29+ тысяч датасетов, вот он ближе к GeoSeer, но индексировал всего 1572 источника и его тоже больше нет. Тоже остался тоже скриншот.
И был ещё такой поисковик Geometa, но теперь даже его скриншот найти оказалось непросто.
Фактических попыток систематизировать и сделать доступными геоданные и геосервисы было много. Можно сказать что у Dateno тоже есть подзадача в части геоданных.
В каталоге Dateno сейчас 4.4 миллиона наборов геоданных извлеченных из 3127 геопорталов. При этом в реестре Dateno всего 5955 геопорталов и после индексации оставшихся объём геоданных существенно вырастет, кроме того много геоданных в других типах дата каталогов: порталах открытых данных, научных репозиториях и тд., это тоже добавит число геоданных.
Но пока приходится держать в голове что в части геоданных относительно сравнимой референсной базой является GeoSeer.
Ссылки:
[1] https://directory.spatineo.com
[2] https://statuschecker.fgdc.gov
#opendata #geodata #datasets #datacatalogs #dateno
Почему я в последнее время много думаю и пишу про геоданные?
Есть 4 основных типов общедоступных данных данных которые собираются в Dateno:
- открытые данные (opendata). С ними всё довольно понятно, их много, не не бесконечно много. Большая часть порталов известны, далее просто длительная методическая работа по их систематизации и сбору датасетов
- научные данные. Тут не всё так понятно, и этих данных по объёму более всего в мире, но в каждой науке свои виды каталогов данных, стандарты и тд. За пределами отдельных научных дисциплин у этих данных не так много пользы
- статистика и индикаторы. Нужны всем, чаще стандартизированы, поддаются систематизированному сбору и "расщепляются" на множество поддатасетов в привязке к конкретным странам и территориям. Много усилий требуется по агрегации национальных каталогов статистики.
- геоданные. Их много, чаще стандартизированы, но поиск и каталогизация явно недостаточны. Предыдущие попытки чаше безуспешны.
Остальные типы данных - это данные для машинного обучения, данные из коммерческих маркетплейсов или датасеты из порталов микроданных (социология), все они сильно меньше количественно.
Существенный количественный рост данных в Dateno будет от трёх категорий: научные данные, данные индикаторов и геоданные.
При этом научные данные можно _очень быстро_ загрузить из 3-4 крупных источников и это добавит +20 млн датасетов и создаст огромные пузыри данных по нескольким языкам, категориям и темам.
Данные индикаторов стремительно превратят Dateno в портал по макроэкономике/макростатистике. Их также можно загрузить +5 млн датасетов в короткое время.
А в агрегированных геоданных сейчас есть объективный "пузырь", огромное число датасетов по Германии отчего в любом поисковике по данным доля геоданных их Германии достигает 40-60% от общего числа. Если не больше.
Конечно, в какой-то момент, можно перестать думать про этот баланс и залить в Dateno несколько десятков миллионов датасетов и уже потом заниматься вопросами качества индекса. Так, например, сделали в агрегаторах научных данных типа SciDb и OpenAIRE. Там очень много мусора который создаёт количество датасетов, но который и почти не найдёшь потому что эти мусорные данные даже не подпадают под фасеты. В общем-то там ставка однозначно сделана на количество датасетов, а в этом смысле нет проблемы достигнуть того же.
#opendata #data #dateno #thoughts #geodata
Есть 4 основных типов общедоступных данных данных которые собираются в Dateno:
- открытые данные (opendata). С ними всё довольно понятно, их много, не не бесконечно много. Большая часть порталов известны, далее просто длительная методическая работа по их систематизации и сбору датасетов
- научные данные. Тут не всё так понятно, и этих данных по объёму более всего в мире, но в каждой науке свои виды каталогов данных, стандарты и тд. За пределами отдельных научных дисциплин у этих данных не так много пользы
- статистика и индикаторы. Нужны всем, чаще стандартизированы, поддаются систематизированному сбору и "расщепляются" на множество поддатасетов в привязке к конкретным странам и территориям. Много усилий требуется по агрегации национальных каталогов статистики.
- геоданные. Их много, чаще стандартизированы, но поиск и каталогизация явно недостаточны. Предыдущие попытки чаше безуспешны.
Остальные типы данных - это данные для машинного обучения, данные из коммерческих маркетплейсов или датасеты из порталов микроданных (социология), все они сильно меньше количественно.
Существенный количественный рост данных в Dateno будет от трёх категорий: научные данные, данные индикаторов и геоданные.
При этом научные данные можно _очень быстро_ загрузить из 3-4 крупных источников и это добавит +20 млн датасетов и создаст огромные пузыри данных по нескольким языкам, категориям и темам.
Данные индикаторов стремительно превратят Dateno в портал по макроэкономике/макростатистике. Их также можно загрузить +5 млн датасетов в короткое время.
А в агрегированных геоданных сейчас есть объективный "пузырь", огромное число датасетов по Германии отчего в любом поисковике по данным доля геоданных их Германии достигает 40-60% от общего числа. Если не больше.
Конечно, в какой-то момент, можно перестать думать про этот баланс и залить в Dateno несколько десятков миллионов датасетов и уже потом заниматься вопросами качества индекса. Так, например, сделали в агрегаторах научных данных типа SciDb и OpenAIRE. Там очень много мусора который создаёт количество датасетов, но который и почти не найдёшь потому что эти мусорные данные даже не подпадают под фасеты. В общем-то там ставка однозначно сделана на количество датасетов, а в этом смысле нет проблемы достигнуть того же.
#opendata #data #dateno #thoughts #geodata
В рубрике закрытых данных в РФ у геопортала Архангельской области на базе ArcGIS закончилась лицензия [1] и слои данных и сервисы с этого сервера более недоступны. Хотя они всё ещё перечислены в их каталоге геоданных [2]. Похоже что геопортал уже, или перевели, или переводят на российскую ГИС Orbis, у которой открытых слоёв с данными нет и в каталоге они не перечислены, но есть недокументированные API. Не совместимые с ArcGIS или с протоколами OGC.
А каталог геоданных в Архангельской области не обновляли уже 3 года.
Ссылки:
[1] https://maps1.dvinaland.ru/arcgis/rest/services/AdressnPlan/Kadastr/FeatureServer/0
[2] https://maps29.ru/catalog/#
[2] https://maps29.ru
#opendata #closeddata #datasets #russia #geodata
А каталог геоданных в Архангельской области не обновляли уже 3 года.
Ссылки:
[1] https://maps1.dvinaland.ru/arcgis/rest/services/AdressnPlan/Kadastr/FeatureServer/0
[2] https://maps29.ru/catalog/#
[2] https://maps29.ru
#opendata #closeddata #datasets #russia #geodata
Полезные ссылки про технологии, данные и не только:
- Top Programming Languages 2024 [1] от IEEE Spectrum, для интриги не назову языки лидеры. Но всё очевидно:)
- GCSE results 2024: The main trends in grades and entries [2] лонгрид про данные результатов британского экзамена GCSE от Education Datalab.
- New Washington Post AI tool sifts massive data sets [3] в Axios о том что у Washington Post новый ИИ инструмент для просеивания данных, через него уже прогнали базу видеороликов кандидатов в президенты [4].
- Using Perplexity to prepare to job interview [5] автор описывает инструкции и шаблон промпт по подготовке к интервью компании на основании описания вакансии. Эта идея имеет больше глубины чем кажется на первый взгляд. Применимо не только к подготовке к интервью, но и в принятии решения откликаться ли на вакансию.
- Benchmarking energy usage and performance of Polars and pandas [6] сравнение энергопотребления при использовании Polars и Pandas. Интересен сам факт сравнения, но объекты сравнения подобраны плохо. Сравнивать надо с теми же движками что применялись в 1 billion rows challenge, а не вот так. Pandas уже какое-то время рассматривается как референсный продукт, хуже которого быть нельзя в части скорости работы с данными.
- No, 80% of data isn’t spatial (and why that is a good thing) [7] автор опровергает, вернее, пытается опровергнуть тот факт что 80% датасетов это геоданные. Нууу, вот тут то можно и поспорить. Количественно точно не 80%. А вот качественно, вернее объёмно по хранению... До того как объёмы геномных данных не начали накапливаться десятками петабайтов, а это где-то лет 5 назад началось, геоданные, с учётом данных наук о Земле, могли по объёму быть и более 80%. Сейчас я думаю что геномные данные составляют не менее 50%: данных.
Ссылки:
[1] https://spectrum.ieee.org/top-programming-languages-2024
[2] https://ffteducationdatalab.org.uk/2024/08/gcse-results-2024-the-main-trends-in-grades-and-entries/
[3] https://www.axios.com/2024/08/20/washington-post-ai-tool-data
[4] https://www.washingtonpost.com/elections/interactive/2024/republican-campaign-ads-immigration-border-security/
[5] https://www.linkedin.com/posts/patleomi_i-just-unlocked-a-really-cool-new-use-case-activity-7232456130281549825-onDm
[6] https://pola.rs/posts/benchmark-energy-performance/
[7] https://www.spatialstack.ai/blog/no-80-of-data-isn-t-spatial-and-why-that-is-a-good-thing
#data #ai #geodata #readings
- Top Programming Languages 2024 [1] от IEEE Spectrum, для интриги не назову языки лидеры. Но всё очевидно:)
- GCSE results 2024: The main trends in grades and entries [2] лонгрид про данные результатов британского экзамена GCSE от Education Datalab.
- New Washington Post AI tool sifts massive data sets [3] в Axios о том что у Washington Post новый ИИ инструмент для просеивания данных, через него уже прогнали базу видеороликов кандидатов в президенты [4].
- Using Perplexity to prepare to job interview [5] автор описывает инструкции и шаблон промпт по подготовке к интервью компании на основании описания вакансии. Эта идея имеет больше глубины чем кажется на первый взгляд. Применимо не только к подготовке к интервью, но и в принятии решения откликаться ли на вакансию.
- Benchmarking energy usage and performance of Polars and pandas [6] сравнение энергопотребления при использовании Polars и Pandas. Интересен сам факт сравнения, но объекты сравнения подобраны плохо. Сравнивать надо с теми же движками что применялись в 1 billion rows challenge, а не вот так. Pandas уже какое-то время рассматривается как референсный продукт, хуже которого быть нельзя в части скорости работы с данными.
- No, 80% of data isn’t spatial (and why that is a good thing) [7] автор опровергает, вернее, пытается опровергнуть тот факт что 80% датасетов это геоданные. Нууу, вот тут то можно и поспорить. Количественно точно не 80%. А вот качественно, вернее объёмно по хранению... До того как объёмы геномных данных не начали накапливаться десятками петабайтов, а это где-то лет 5 назад началось, геоданные, с учётом данных наук о Земле, могли по объёму быть и более 80%. Сейчас я думаю что геномные данные составляют не менее 50%: данных.
Ссылки:
[1] https://spectrum.ieee.org/top-programming-languages-2024
[2] https://ffteducationdatalab.org.uk/2024/08/gcse-results-2024-the-main-trends-in-grades-and-entries/
[3] https://www.axios.com/2024/08/20/washington-post-ai-tool-data
[4] https://www.washingtonpost.com/elections/interactive/2024/republican-campaign-ads-immigration-border-security/
[5] https://www.linkedin.com/posts/patleomi_i-just-unlocked-a-really-cool-new-use-case-activity-7232456130281549825-onDm
[6] https://pola.rs/posts/benchmark-energy-performance/
[7] https://www.spatialstack.ai/blog/no-80-of-data-isn-t-spatial-and-why-that-is-a-good-thing
#data #ai #geodata #readings
IEEE Spectrum
The Top Programming Languages 2024
Typescript and Rust are among the rising stars
В рубрике интересных продуктов для публикации данных малоизвестный pycsw [1] движок с открытым кодом для публикации метаданных для геоданных. Поддерживает стандарты STAC API, CSW, OpenAPI, OGC Collections, OpenSearch, OAI-PMH и даже SRU, который, скорее, для библиотечных систем.
Имеет немного внедрений, около 50 по всему миру [2] во всяком случае тех что известны самим разработчикам.
Сильно менялся от версии к версии. До версии 3.0 был просто движком для публикации CSW каталогов, а с версии 3.0 чем-то стал конкурировать с геосервером или дополнять, тут уж как посмотреть.
С точки зрения архитектуры штука не то чтобы сильно современная, но открытый код, но расширяется плагинами и, в целом, функции индексации геоданных может выполнять неплохо если прикрутить к нему интерфейс, API для управления и тд.
Ссылки:
[1] https://pycsw.org
[2] https://raw.githubusercontent.com/geopython/pycsw.org/gh-pages/live-deployments.geojson
#opendata #geodata #datacatalogs #opensource
Имеет немного внедрений, около 50 по всему миру [2] во всяком случае тех что известны самим разработчикам.
Сильно менялся от версии к версии. До версии 3.0 был просто движком для публикации CSW каталогов, а с версии 3.0 чем-то стал конкурировать с геосервером или дополнять, тут уж как посмотреть.
С точки зрения архитектуры штука не то чтобы сильно современная, но открытый код, но расширяется плагинами и, в целом, функции индексации геоданных может выполнять неплохо если прикрутить к нему интерфейс, API для управления и тд.
Ссылки:
[1] https://pycsw.org
[2] https://raw.githubusercontent.com/geopython/pycsw.org/gh-pages/live-deployments.geojson
#opendata #geodata #datacatalogs #opensource
В рубрике интересных малоизвестных проектов по публикации данных WMO Information System (WIS) 2.0 [1] проект Всемирной метеорологической организации по стандартизированному и систематизированному сбору данных о местной погоде от национальных метеорологических агентств. WIS 2.0 представляет собой набор стандартов по предоставлению данных и для упрощения работы по стандартам WMO предоставляет открытое и бесплатное ПО WIS 2 in a box [2] в которое поступает данные со станций метеонаблюдения и данные предоставляются в виде OGC API (стандарт геоданных) через встроенный внутрь движок pygeoapi [3].
Все публикуемые в WIS 2.0 in a box стандартизированы, там всего несколько коллекций: метаданные, станции, уведомления о данных и ежечасные синоптические наблюдения.
Большая часть инсталляций WIS 2.0 in a box общедоступны, но и не очевидно может быть где найти, но и это не так сложно, если захотеть.
Вот примеры серверов с WIS 2 in a box:
- США https://wis2node.nws.noaa.gov
- Белиз https://wis.nms.gov.bz
- Казахстан https://wis2box.kazhydromet.kz
- Россия https://wis2box.mecom.ru
- Китай https://wis2node.wis.cma.cn/
И так далее, таких инсталляций довольно много, что делает pygeoapi одним из довольно популярных движков для публикации геоданных.
P.S. Мне так и не удалось найти инсталляции WIS 2.0 in a box в Армении, возможно его там и нет, а данные передаются каким-то другим образом. Как я помню, синоптические данные в странах СНГ собирались через Росгидромет.
Ссылки:
[1] https://community.wmo.int/en/activity-areas/wis
[2] https://docs.wis2box.wis.wmo.int/en/1.0b7/index.html
[3] https://pygeoapi.io/
#opendata #datacatalogs #geodata #datasets #synoptic #weather
Все публикуемые в WIS 2.0 in a box стандартизированы, там всего несколько коллекций: метаданные, станции, уведомления о данных и ежечасные синоптические наблюдения.
Большая часть инсталляций WIS 2.0 in a box общедоступны, но и не очевидно может быть где найти, но и это не так сложно, если захотеть.
Вот примеры серверов с WIS 2 in a box:
- США https://wis2node.nws.noaa.gov
- Белиз https://wis.nms.gov.bz
- Казахстан https://wis2box.kazhydromet.kz
- Россия https://wis2box.mecom.ru
- Китай https://wis2node.wis.cma.cn/
И так далее, таких инсталляций довольно много, что делает pygeoapi одним из довольно популярных движков для публикации геоданных.
P.S. Мне так и не удалось найти инсталляции WIS 2.0 in a box в Армении, возможно его там и нет, а данные передаются каким-то другим образом. Как я помню, синоптические данные в странах СНГ собирались через Росгидромет.
Ссылки:
[1] https://community.wmo.int/en/activity-areas/wis
[2] https://docs.wis2box.wis.wmo.int/en/1.0b7/index.html
[3] https://pygeoapi.io/
#opendata #datacatalogs #geodata #datasets #synoptic #weather
Вдогонку к тексту про недокументированные API, маленький лайфхак о котором мало кто знает. У сервисов ArcGIS проверка доступа к ним зависит от вида запрашиваемого контента, для одних и тех же данных. Если обратится по ссылке к HTML представлению то может быть ошибка 403, а если к JSON то всё возвращается.
На скриншотах сервер с данными ArcGIS в Индии. Его можно открыть по ссылке. Он выдаст 403 ошибку, потом добавляем ?f=json и получаем ответ в формате JSON. Что важно, даже несмотря на то что администратор ограничил просмотр директорий с сервисами.
Это уже чуть-чуть ближе к инфобезу, но серьёзные данные и так не выставляют в ArcGIS в открытый доступ, а краулеры вообще не знают что там администратор ограничил. JSON доступен и парсится? Вот и славно.
#opendata #undocumentedapi #datasets #arcgis #geodata
На скриншотах сервер с данными ArcGIS в Индии. Его можно открыть по ссылке. Он выдаст 403 ошибку, потом добавляем ?f=json и получаем ответ в формате JSON. Что важно, даже несмотря на то что администратор ограничил просмотр директорий с сервисами.
Это уже чуть-чуть ближе к инфобезу, но серьёзные данные и так не выставляют в ArcGIS в открытый доступ, а краулеры вообще не знают что там администратор ограничил. JSON доступен и парсится? Вот и славно.
#opendata #undocumentedapi #datasets #arcgis #geodata
В рубрике доступных, но недокументированных открытых данных которые. по хорошему, российское Минэкономразвития должно было бы публиковать на портале открытых данных если бы он был, геоданные инвестиционной карты РФ [1] хотя никак не обозначены и не документированы публично тем не менее доступны через интерфейсы API опенсорс продукта GeoServer который используется внутри этого портала. Разработчики закрыли интерфейс самого геосервера, но закрыть интерфейсы API невозможно без глубокой переделки сайта, поскольку именно с сайта слои автоматически подгружаются. Поэтому и рассказать об этом можно без опасений, API исчезнут только если исчезнет сам портал.
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.1.1&request=GetCapabilities - WMS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.3.0&request=GetCapabilities - WMS 1.3.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities - WFS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.1.0&request=GetCapabilities - WFS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=2.0.0&request=GetCapabilities - WFS 2.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.0.0&request=GetCapabilities - WCS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.0&request=GetCapabilities - WCS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.1&request=GetCapabilities - WCS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1&request=GetCapabilities - WCS 1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities - WCS 2.0.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities - WPS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/tms/1.0.0 - TMS. 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wms?request=GetCapabilities&version=1.1.1&tiled=true - WMTS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wmts?REQUEST=GetCapabilities - WMTS 1.0.0
Этот пример не единственный, в России общедоступных инсталляций GeoServer 12 штук, на сегодняшний день. Это немного, но они есть.
Ссылки:
[1] https://invest.gov.ru
#opendata #russia #datasets #geodata #spatial
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.1.1&request=GetCapabilities - WMS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.3.0&request=GetCapabilities - WMS 1.3.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities - WFS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.1.0&request=GetCapabilities - WFS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=2.0.0&request=GetCapabilities - WFS 2.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.0.0&request=GetCapabilities - WCS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.0&request=GetCapabilities - WCS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.1&request=GetCapabilities - WCS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1&request=GetCapabilities - WCS 1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities - WCS 2.0.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities - WPS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/tms/1.0.0 - TMS. 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wms?request=GetCapabilities&version=1.1.1&tiled=true - WMTS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wmts?REQUEST=GetCapabilities - WMTS 1.0.0
Этот пример не единственный, в России общедоступных инсталляций GeoServer 12 штук, на сегодняшний день. Это немного, но они есть.
Ссылки:
[1] https://invest.gov.ru
#opendata #russia #datasets #geodata #spatial
Прекрасное чтение Watching the Watchdogs: Tracking SEC Inquiries using Geolocation Data [1] в виде научной статьи, но я перескажу простыми словами.
Если вкратце, то группа исследователей:
1) Нашли поставщика данных у которого они закупили данные по всем телефонам с которыми ходили люди в офисе комиссии по ценным бумагам в США (SEC) по своим офисам
2) Идентифицировали сотрудников из общего числа устройств,
3) Сопоставили множество геоданных, вплоть до шейпфайлов штабквартир публичных компаний
4) Определили когда сотрудники SEC приходили в эти офисы
5) Разобрали как SEC проверяет публичные компании и когда эта информация публична
6) Сопоставили проверки с изменениями стоимости ценных бумаг
И вуаля, так и хочется сказать, почему этигении люди обо всём этом написали научную статью, вместо того чтобы существенно обогатится на полученных данных!
Многое бы бизнес во многих странах отдал бы за отслеживание того куда ходят налоговики, силовики, представители горных национальных республик и ещё много чего.
А статью рекомендую, жаль лишь что они источник данных не указывают.
Ссылки:
[1] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4941708
#dataanalysis #research #privacy #geodata
Если вкратце, то группа исследователей:
1) Нашли поставщика данных у которого они закупили данные по всем телефонам с которыми ходили люди в офисе комиссии по ценным бумагам в США (SEC) по своим офисам
2) Идентифицировали сотрудников из общего числа устройств,
3) Сопоставили множество геоданных, вплоть до шейпфайлов штабквартир публичных компаний
4) Определили когда сотрудники SEC приходили в эти офисы
5) Разобрали как SEC проверяет публичные компании и когда эта информация публична
6) Сопоставили проверки с изменениями стоимости ценных бумаг
И вуаля, так и хочется сказать, почему эти
Многое бы бизнес во многих странах отдал бы за отслеживание того куда ходят налоговики, силовики, представители горных национальных республик и ещё много чего.
А статью рекомендую, жаль лишь что они источник данных не указывают.
Ссылки:
[1] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4941708
#dataanalysis #research #privacy #geodata
Ssrn
Watching the Watchdogs: Tracking SEC Inquiries using Geolocation Data
The Securities and Exchange Commission's investigative process remains opaque and challenging to study due to limited observability. Leveraging de-identified sm
В рубрике интересных больших наборов данных
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
В рубрике интересных каталогов и поисковиков по данным проект WorldEx [1] каталог данных и поисковик геоданных привязанных к хексагонам.
Кодирование через хексагоны стало популярным относительно недавно, авторы используют библиотеку H3 [2] от Uber.
Подход любопытный, благо в Dateno у нас миллионы датасетов с геоданными и было бы любопытно разметить их по хексагонам. Очень любопытно.
Сам проект worldex с открытым кодом [3], хранят данные в PostGIS и Elasticsearch.
Жаль не удалось найти код конвейеров данных по геокодированию в H3, но и без него такое можно повторить.
Ссылки:
[1] https://worldex.org
[2] https://h3geo.org
[3] https://github.com/worldbank/worldex
#opendata #data #search #datasearch #datacatalogs #dataviz #geodata
Кодирование через хексагоны стало популярным относительно недавно, авторы используют библиотеку H3 [2] от Uber.
Подход любопытный, благо в Dateno у нас миллионы датасетов с геоданными и было бы любопытно разметить их по хексагонам. Очень любопытно.
Сам проект worldex с открытым кодом [3], хранят данные в PostGIS и Elasticsearch.
Жаль не удалось найти код конвейеров данных по геокодированию в H3, но и без него такое можно повторить.
Ссылки:
[1] https://worldex.org
[2] https://h3geo.org
[3] https://github.com/worldbank/worldex
#opendata #data #search #datasearch #datacatalogs #dataviz #geodata
В рубрике больших интересных наборов данных Annual National Land Cover Database (NLCD) [1] датасет с измерениями покрытия почвы в США с 1985 по 2023 годы, почти 40 лет.
Распространяется в виде GeoJSON, GeoTIF, SHP файлов и с помощью разных инструментов выгрузки и онлайн доступа.
В общей сложности это десятки гигабайт геоданных.
Ранее этот датасет охватывал только период 2001-2021 годов с шагом в 3 года, а теперь охватывает 38 лет с шагом в один год.
Для любых практических исследований в области сельского хозяйства и изменения климата - это бесценный датасет. Жаль лишь что он не охватывает весь мир, а только одну страну.
Ссылки:
[1] https://www.usgs.gov/news/national-news-release/usgs-releases-new-products-map-four-decades-land-cover-change
#opendata #datasets #geodata
Распространяется в виде GeoJSON, GeoTIF, SHP файлов и с помощью разных инструментов выгрузки и онлайн доступа.
В общей сложности это десятки гигабайт геоданных.
Ранее этот датасет охватывал только период 2001-2021 годов с шагом в 3 года, а теперь охватывает 38 лет с шагом в один год.
Для любых практических исследований в области сельского хозяйства и изменения климата - это бесценный датасет. Жаль лишь что он не охватывает весь мир, а только одну страну.
Ссылки:
[1] https://www.usgs.gov/news/national-news-release/usgs-releases-new-products-map-four-decades-land-cover-change
#opendata #datasets #geodata
В рубрике как это устроено у них один из крупнейших научных репозиториев данных в мире ScienceBase.gov [1] поддерживается Геологической службой США (USGS) и содержит более чем 18.7 миллионов записей включающих наборы данных, точки подключения к API, файлы данных тайлов и многие другие относящиеся к геологии, геодезии, географии и другим гео наукам в США.
Большая часть записей там это разрезанные по регионам очень крупные базы данных такие как: National Elevation Dataset (NED) - 7.4 миллиона записей и
3D Elevation Program (3DEP) - 6.1 миллион записей и так далее.
Многие датасеты в этом репозитории - это описания физических объектов и содержан они, как машиночитаемое представление, так и многочисленные фотографии. Почти у всех датасетов есть геопривязка в форме точки на карте или полигон где находится множество точек/объектов.
Этот каталог по масштабам можно сравнить с Data.one и Pangaea, но по объёму и числу датасетов он гораздо больше.
При этом у него, как и у многих предметно тематических научных репозиториев, собственные API для доступа и форматы публикации метаданных. Это и собственная схема описания данных, и стандарт FGDC используемый в США, и стандарт ISO TC 211.
Важно и то что USGS требует от исследователей публиковать данные в этом репозитории и он непрерывно наполняется результатами профинансированных ими проектами, данных геофондов на уровне штатов и результатами работ научных институтов.
А с точки зрения поиска, это довольно хорошо структурированный репозиторий, с возможностью фасетного поиска. Из видимых недостатков у него нет bulk выгрузки метаданных, так чтобы была возможность выгрузить все записи целиком, да и некоторые датасеты тоже. Это кажется очень логичным, изучая практики публикации геномных данных, с одной стороны, с другой стороны в геологии нет такой всеобъемлющей широты использования онтологий и бесконечного числа идентификаторов. Датасеты менее гомогенны, но и в этом направлении явно идёт постепенная работа.
Ссылки:
[1] https://www.sciencebase.gov
#opendata #datasets #datacatalogs #geology #geography #geodata
Большая часть записей там это разрезанные по регионам очень крупные базы данных такие как: National Elevation Dataset (NED) - 7.4 миллиона записей и
3D Elevation Program (3DEP) - 6.1 миллион записей и так далее.
Многие датасеты в этом репозитории - это описания физических объектов и содержан они, как машиночитаемое представление, так и многочисленные фотографии. Почти у всех датасетов есть геопривязка в форме точки на карте или полигон где находится множество точек/объектов.
Этот каталог по масштабам можно сравнить с Data.one и Pangaea, но по объёму и числу датасетов он гораздо больше.
При этом у него, как и у многих предметно тематических научных репозиториев, собственные API для доступа и форматы публикации метаданных. Это и собственная схема описания данных, и стандарт FGDC используемый в США, и стандарт ISO TC 211.
Важно и то что USGS требует от исследователей публиковать данные в этом репозитории и он непрерывно наполняется результатами профинансированных ими проектами, данных геофондов на уровне штатов и результатами работ научных институтов.
А с точки зрения поиска, это довольно хорошо структурированный репозиторий, с возможностью фасетного поиска. Из видимых недостатков у него нет bulk выгрузки метаданных, так чтобы была возможность выгрузить все записи целиком, да и некоторые датасеты тоже. Это кажется очень логичным, изучая практики публикации геномных данных, с одной стороны, с другой стороны в геологии нет такой всеобъемлющей широты использования онтологий и бесконечного числа идентификаторов. Датасеты менее гомогенны, но и в этом направлении явно идёт постепенная работа.
Ссылки:
[1] https://www.sciencebase.gov
#opendata #datasets #datacatalogs #geology #geography #geodata
Большая область работы в дата инженерии - это геокодирование данных. Причём относится это не только к датасетам, но ко всем цифровым объектам для которых привязка к конкретной геолокации необходима.
Например, в Dateno есть геопривязка датасетов к странам, макрорегионам и субрегионам (территориям). Она, в большей части, реализована относительно просто. Изначально полувручную-полуавтоматически геокодированы источники данных, а их всего около 10 тысяч и далее с них геопривязка транслируется на датасеты. Это довольно простая логика работающая со всеми муниципальными и региональными порталами данных и куда хуже работающая в отношении национальных порталов данных, реестров индикаторов, каталогов научных данных и так далее.
Главная причина в том что национальные порталы часто агрегируют данные из локальных, научные данные могут происходить из любой точки мира, а индикаторы могут быть как глобальными, так и локализованными до стран, групп стран и отдельных городов и территорий.
Для самых крупных каталогов данных у нас есть дополнительная геопривязка датасетов через простое геокодирование стран по внутреннему справочнику и использованию pycountry.
Но это всё даёт геокодирование, максимум, 40-60% всех датасетов и многие значимые наборы данных привязки к конкретной стране/региону могут не иметь.
Что с этим делать?
Один путь - это использовать существующие открытые и коммерческие API геокодирования такие как Nominatim, Geonames, Googe, Yandex, Bing и другие. У автора библиотеки geocoder они хорошо систематизированы и можно использовать её как универсальный интерфейс, но одно дело когда надо геокодировать тысячи объектов и совсем другое когда десятки миллионов. Кроме того остаётся то ограничение что может не быть отдельных полей с данными геопривязки у первичных датасетов. На национальном портале могут быть опубликованы данные у которых геопривязка может быть только в названии или в описании, но не где-то отдельным полем.
Вот, например, набор данных исторических бюджетов города Мальмо в Швеции на общеевропейском портале открытых данных. Там геопривязка есть только до страны поскольку сам датасет в общеевропейский портал попадает со шведского национального портала открытых данных. При этом в публикации на шведском портале открытых данных можно через API узнать что там есть геокод города Malmo через Geonames и есть он в оригинальных данных на портале данных города.
При этом геоидентифицирующие признаки могут быть разнообразны, начиная со ссылок на geonames, продолжая ссылками на справочники Евросоюза, тэгами и просто текстовым описанием на любом условно языке.
Другой путь в попытке применить LLM для геокодирования в идеале так чтобы отправить туда JSON объект с кучей атрибутов и запросом на то чтобы по нему получить код территории/страны по ISO 3166-1 или ISO 3166-2.
Что выглядит интересно ещё и потому что у всех API геокодирования есть серьёзные ограничения на число запросов и на их кеширование.
И, наконец, данные о геопривязке могут быть в самих данных датасета, но это самая дорогая операция поскольку требует уже принципиально других вычислительных усилий.
#opendata #dateno #geodata #thoughts
Например, в Dateno есть геопривязка датасетов к странам, макрорегионам и субрегионам (территориям). Она, в большей части, реализована относительно просто. Изначально полувручную-полуавтоматически геокодированы источники данных, а их всего около 10 тысяч и далее с них геопривязка транслируется на датасеты. Это довольно простая логика работающая со всеми муниципальными и региональными порталами данных и куда хуже работающая в отношении национальных порталов данных, реестров индикаторов, каталогов научных данных и так далее.
Главная причина в том что национальные порталы часто агрегируют данные из локальных, научные данные могут происходить из любой точки мира, а индикаторы могут быть как глобальными, так и локализованными до стран, групп стран и отдельных городов и территорий.
Для самых крупных каталогов данных у нас есть дополнительная геопривязка датасетов через простое геокодирование стран по внутреннему справочнику и использованию pycountry.
Но это всё даёт геокодирование, максимум, 40-60% всех датасетов и многие значимые наборы данных привязки к конкретной стране/региону могут не иметь.
Что с этим делать?
Один путь - это использовать существующие открытые и коммерческие API геокодирования такие как Nominatim, Geonames, Googe, Yandex, Bing и другие. У автора библиотеки geocoder они хорошо систематизированы и можно использовать её как универсальный интерфейс, но одно дело когда надо геокодировать тысячи объектов и совсем другое когда десятки миллионов. Кроме того остаётся то ограничение что может не быть отдельных полей с данными геопривязки у первичных датасетов. На национальном портале могут быть опубликованы данные у которых геопривязка может быть только в названии или в описании, но не где-то отдельным полем.
Вот, например, набор данных исторических бюджетов города Мальмо в Швеции на общеевропейском портале открытых данных. Там геопривязка есть только до страны поскольку сам датасет в общеевропейский портал попадает со шведского национального портала открытых данных. При этом в публикации на шведском портале открытых данных можно через API узнать что там есть геокод города Malmo через Geonames и есть он в оригинальных данных на портале данных города.
При этом геоидентифицирующие признаки могут быть разнообразны, начиная со ссылок на geonames, продолжая ссылками на справочники Евросоюза, тэгами и просто текстовым описанием на любом условно языке.
Другой путь в попытке применить LLM для геокодирования в идеале так чтобы отправить туда JSON объект с кучей атрибутов и запросом на то чтобы по нему получить код территории/страны по ISO 3166-1 или ISO 3166-2.
Что выглядит интересно ещё и потому что у всех API геокодирования есть серьёзные ограничения на число запросов и на их кеширование.
И, наконец, данные о геопривязке могут быть в самих данных датасета, но это самая дорогая операция поскольку требует уже принципиально других вычислительных усилий.
#opendata #dateno #geodata #thoughts
В рубрике как это работает у них, а могло бы не только у них про большие коллекции академических геоданных и карт.
В мире есть несколько больших коллекций исторических карт, как растровых, так и векторных значительная часть этих коллекций создана на базе портала Geoblacklight, например, Harvard Geospatial Library где эти карты преобразованы в GeoTIFF и другие форматы георастра или даже в векторные карты. К примеру, вот карта региона Черного моря в 1705 году.
Или вот немецкая карта Сибири 18 века на портале георесурсов и цифровых карт библиотеки Принстона. Она даже не преобразована в GeoTIFF и лежит там как есть просто картинкой.
Найти аналогичным образом размеченные карты по России сложно, хотя, казалось бы, они должны быть.
Так где они есть?
1й источник - это Госкаталог (goskatalog.ru) где можно найти самые разные карты имперских губерний
2-й источник - это НЭБ с большим числом исторических карт
а 3-й, совершенно не неожиданно, но Archive.org
Если поискать по интернету, то найдутся и ещё источники.
Но с Россией, в каком-то смысле, проще, а если искать те же исторические карты Армении, то искать их надо и в российских и в международных источниках.
Институциональные репозитории таких исторических геоданных - это большое общественное благо для всех проектов в области цифровой гуманитаристики.
#opendata #geodata #history #dh #maps
В мире есть несколько больших коллекций исторических карт, как растровых, так и векторных значительная часть этих коллекций создана на базе портала Geoblacklight, например, Harvard Geospatial Library где эти карты преобразованы в GeoTIFF и другие форматы георастра или даже в векторные карты. К примеру, вот карта региона Черного моря в 1705 году.
Или вот немецкая карта Сибири 18 века на портале георесурсов и цифровых карт библиотеки Принстона. Она даже не преобразована в GeoTIFF и лежит там как есть просто картинкой.
Найти аналогичным образом размеченные карты по России сложно, хотя, казалось бы, они должны быть.
Так где они есть?
1й источник - это Госкаталог (goskatalog.ru) где можно найти самые разные карты имперских губерний
2-й источник - это НЭБ с большим числом исторических карт
а 3-й, совершенно не неожиданно, но Archive.org
Если поискать по интернету, то найдутся и ещё источники.
Но с Россией, в каком-то смысле, проще, а если искать те же исторические карты Армении, то искать их надо и в российских и в международных источниках.
Институциональные репозитории таких исторических геоданных - это большое общественное благо для всех проектов в области цифровой гуманитаристики.
#opendata #geodata #history #dh #maps
Foursquare вот буквально только что выложили огромный набор данных в 100 миллионов точек интереса (POI) [1] [2], скачать его можно через Amazon S3 хранилище [3] в виде множества parquet файлов.
Данные охватывают 247 стран и территорий [4], например, по Армении 7425 точек (очень мало!), по Польше 3,553,098 (❗️), по России меньше чем по Польше, всего 3,125,954. А более всего, ожидаемо, по США - 22 миллиона точек. Это на апрель 2023 года и по всей базе Places, а конкретно этот набор надо изучить, что там внутри.
Всё оформлено как полноценный дата продукт, с документацией, примерами SQL запросов, API, ответами на вопросы. Необычна лицензия, Apache 2.0, она в целом для кода, а не для данных.
Ссылки:
[1] https://location.foursquare.com/resources/blog/products/foursquare-open-source-places-a-new-foundational-dataset-for-the-geospatial-community/
[2] https://opensource.foursquare.com/os-places/
[3] https://docs.foursquare.com/data-products/docs/access-fsq-os-places
[4] https://docs.foursquare.com/data-products/docs/supported-countries
#opendata #datasets #foursquare #geodata #spatial #poi
Данные охватывают 247 стран и территорий [4], например, по Армении 7425 точек (очень мало!), по Польше 3,553,098 (❗️), по России меньше чем по Польше, всего 3,125,954. А более всего, ожидаемо, по США - 22 миллиона точек. Это на апрель 2023 года и по всей базе Places, а конкретно этот набор надо изучить, что там внутри.
Всё оформлено как полноценный дата продукт, с документацией, примерами SQL запросов, API, ответами на вопросы. Необычна лицензия, Apache 2.0, она в целом для кода, а не для данных.
Ссылки:
[1] https://location.foursquare.com/resources/blog/products/foursquare-open-source-places-a-new-foundational-dataset-for-the-geospatial-community/
[2] https://opensource.foursquare.com/os-places/
[3] https://docs.foursquare.com/data-products/docs/access-fsq-os-places
[4] https://docs.foursquare.com/data-products/docs/supported-countries
#opendata #datasets #foursquare #geodata #spatial #poi
Forwarded from Open Data Armenia
[EN] Armenian Points of interests (POI) data from Foursquare OS Places [1] is a new dataset in the Open Data Armenia data catalogue. This data is extracted from the huge OS Places dataset previously published by Foursquare [2].
The dataset contains just under 16 thousand locations across the country, most of the place names are in English, Russian and Armenian. The most places are marked in Yerevan, but not only.
Data in Parquet format is a special format for data popular in Data Science, it is most convenient to work with it using such tools as DuckDB, Pandas and Polars.
If someone needs this data in other formats, please write, we will add it.
[RU] Armenian Points of interests (POI) data from Foursquare OS Places [1] новый набор данных в каталоге данных Open Data Armenia. Эти данные извлечены из огромного датасета OS Places ранее опубликованного Foursquare [2].
Датасет содержит чуть менее 16 тысяч точек по стране, большая часть названий мест на английском, русском и армянском языках. Более всего мест отмечено в Ереване, но не только.
Данные в формате Parquet, это специальный формат для данных популярный в Data Science, с ним удобнее всего работать с помощью таких инструментов как DuckDB, Pandas и Polars.
Если кому-то понадобятся эти данные в других форматах, напишите, добавим.
Ссылки:
[1] https://data.opendata.am/dataset/am-os-places
[2] https://t.iss.one/opendataam/131
#opendata #datasets #geodata #armenia #foursquare
The dataset contains just under 16 thousand locations across the country, most of the place names are in English, Russian and Armenian. The most places are marked in Yerevan, but not only.
Data in Parquet format is a special format for data popular in Data Science, it is most convenient to work with it using such tools as DuckDB, Pandas and Polars.
If someone needs this data in other formats, please write, we will add it.
[RU] Armenian Points of interests (POI) data from Foursquare OS Places [1] новый набор данных в каталоге данных Open Data Armenia. Эти данные извлечены из огромного датасета OS Places ранее опубликованного Foursquare [2].
Датасет содержит чуть менее 16 тысяч точек по стране, большая часть названий мест на английском, русском и армянском языках. Более всего мест отмечено в Ереване, но не только.
Данные в формате Parquet, это специальный формат для данных популярный в Data Science, с ним удобнее всего работать с помощью таких инструментов как DuckDB, Pandas и Polars.
Если кому-то понадобятся эти данные в других форматах, напишите, добавим.
Ссылки:
[1] https://data.opendata.am/dataset/am-os-places
[2] https://t.iss.one/opendataam/131
#opendata #datasets #geodata #armenia #foursquare
Для тех кто хочет поработать с данными из OS Places по России, на Хаб открытых данных выложен датасет в формате parquet на 3 096 012 точек [1] и общим объёмом 309 мегабайт.
Ожидаемо, у тех точек где есть привязка к региону, более всего точек у Москвы и Санкт-Петербурга. А вообще датасет можно использовать и для проверки алгоритмов повышения качества данных потому что у более чем половины точек, к примеру, нет указания региона, города и адреса, только координаты.
Датасет большой, идей по его применению может быть очень много
Ссылки:
[1] https://hubofdata.ru/dataset/ru-os-places
#opendata #russia #geodata #datasets
Ожидаемо, у тех точек где есть привязка к региону, более всего точек у Москвы и Санкт-Петербурга. А вообще датасет можно использовать и для проверки алгоритмов повышения качества данных потому что у более чем половины точек, к примеру, нет указания региона, города и адреса, только координаты.
Датасет большой, идей по его применению может быть очень много
Ссылки:
[1] https://hubofdata.ru/dataset/ru-os-places
#opendata #russia #geodata #datasets
К вопросу о том как и где искать данные, в качестве регулярного напоминания:
Поисковые системы по данным
- Dateno - поисковая система по всем видам наборов данных, геоданных и научных данных, агрегирует их из более чем 5 тысяч каталогов данных, включает 19 миллионов карточек датасетов
- Google Dataset Search - исследовательская поисковая система по датасетам от Google. Охватывает все датасеты в мире опубликованные по стандарту Schema.org Dataset, включает около 50 миллионов карточек датасетов
Поисковые системы по научным данным
- DataCite Commons - поисковик по всем датасетам которым присвоен DOI через сервис DataCite. Более 22 миллионов карточек наборов данных. Используется многими другими поисковыми системами и агрегаторами наборов данных. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- OpenAIRE - поисковая система ЕС по результатам научной деятельности включая датасеты. Около 19 миллионов карточек датасетов. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- BASE (Bielefeld Academic Search Engine) - поисковая система по научным публикациям от Bielefeld University. Включает 25 миллионов карточек датасетов из которых 22 миллиона агргеггируются из DataCite. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- Mendeley Data - поисковик по научным данным от Elsevier, декларирует 26 миллионов карточек датасетов, в реальности многие из низ - это фрагменты единых баз данных или документы в университетских библиотеках. За их исключением реальное число наборов данных ближе к 5 миллионам. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
Платформы и крупнейшие порталы научных данных
- Figshare - одна из крупнейших онлайн платформ для публикации научных данных. Содержит всего 2 миллиона наборов данных включая сами данные. Более половины этих наборов данных происходят из публикаций в рамках Public Library of Science (PLOS).
- OSF - открытая платформа для публикации научных данных. Точное число датасетов измерить сложно поскольку открытой статистики, или нет, или до неё сложно добраться, но можно исходить из того что это как минимум сотни тысяч наборов данных
- DataOne - каталог и агрегатор данных наук о земле. Более 777 тысяч наборов данных, включая все ресурсы/файлы к ним приложенные
Поисковики по геоданным
- GeoSeer - чуть ли не единственный специализированный поисковик по геоданным. Обещают что охватывают 3.5 миллионов точек подключения к гео API таким как WMS, WFS, WMTS и др.
P.S. Существует также большое число крупных порталов данных и агрегаторов в других областях: машинное обучение, статистика, геоданные. О них в следующий раз
#opendata #data #datasearch #datasets #geodata #openaccess
Поисковые системы по данным
- Dateno - поисковая система по всем видам наборов данных, геоданных и научных данных, агрегирует их из более чем 5 тысяч каталогов данных, включает 19 миллионов карточек датасетов
- Google Dataset Search - исследовательская поисковая система по датасетам от Google. Охватывает все датасеты в мире опубликованные по стандарту Schema.org Dataset, включает около 50 миллионов карточек датасетов
Поисковые системы по научным данным
- DataCite Commons - поисковик по всем датасетам которым присвоен DOI через сервис DataCite. Более 22 миллионов карточек наборов данных. Используется многими другими поисковыми системами и агрегаторами наборов данных. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- OpenAIRE - поисковая система ЕС по результатам научной деятельности включая датасеты. Около 19 миллионов карточек датасетов. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- BASE (Bielefeld Academic Search Engine) - поисковая система по научным публикациям от Bielefeld University. Включает 25 миллионов карточек датасетов из которых 22 миллиона агргеггируются из DataCite. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- Mendeley Data - поисковик по научным данным от Elsevier, декларирует 26 миллионов карточек датасетов, в реальности многие из низ - это фрагменты единых баз данных или документы в университетских библиотеках. За их исключением реальное число наборов данных ближе к 5 миллионам. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
Платформы и крупнейшие порталы научных данных
- Figshare - одна из крупнейших онлайн платформ для публикации научных данных. Содержит всего 2 миллиона наборов данных включая сами данные. Более половины этих наборов данных происходят из публикаций в рамках Public Library of Science (PLOS).
- OSF - открытая платформа для публикации научных данных. Точное число датасетов измерить сложно поскольку открытой статистики, или нет, или до неё сложно добраться, но можно исходить из того что это как минимум сотни тысяч наборов данных
- DataOne - каталог и агрегатор данных наук о земле. Более 777 тысяч наборов данных, включая все ресурсы/файлы к ним приложенные
Поисковики по геоданным
- GeoSeer - чуть ли не единственный специализированный поисковик по геоданным. Обещают что охватывают 3.5 миллионов точек подключения к гео API таким как WMS, WFS, WMTS и др.
P.S. Существует также большое число крупных порталов данных и агрегаторов в других областях: машинное обучение, статистика, геоданные. О них в следующий раз
#opendata #data #datasearch #datasets #geodata #openaccess