Ivan Begtin
9.34K subscribers
2.31K photos
4 videos
109 files
5.01K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and etc.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Email [email protected]

Ads/promotion agent: @k0shk
Download Telegram
Я вот всё расхваливаю DuckDB как очень быстрый движок для обработки данных, а он не один такой. Например, ещё есть FireDucks который делает команда из японского NEC и который они активно оптимизируют конкурируя с DuckDB и Polars и в который добавляют поддержку ускорения через GPU.

Плюс разработчики много полезного пишут в своём блоге о том как они работают над оптимизацией обработки запросов [1]

Но есть и существенный минус, его исходный код, похоже, не открыт. Мне не удалось его найти в их репозиториях, там есть только собранные пакеты для Python.


P.S. Картинка отсюда [2].

Ссылки:
[1] https://fireducks-dev.github.io/posts/
[2] https://www.linkedin.com/posts/avi-chawla_pandas-is-getting-outdated-and-an-alternative-activity-7312407582340485120-fH_K?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAA_-HABh4I2pH__YZElkrySwr_MWhdKIVs

#data #datatools #opensource
🔥8👍5
Сугубо техническое. К вопросу про автодокументирование и применение LLM. Я в качестве теста решил обновить инструмент undatum [1] переделав команду analyze для анализа структуры разных видов дата файлов: csv, jsonl, parquet и xml и добавив поддержку не таких машиночитаемых xls, xlsx и даже таблиц из docx файлов.

Но главное было автоматизировать документирование датасетов. Утилита теперь принимает опцию —autodoc при которой список колонок таблиц передаётся в AI Perplexity и полученные описания используются для генерации описания к полям. Соответственно, можно задавать разные языки и получать детальное описание колонки на нужном языке.

Это, конечно, не всё что нужно для автодокументирования датасетов, но некая существенная часть.

И да, в некоем преобразованном виде оно используется в Dateno [2] и есть ещё много других областей применения.

Пока код в основной ветке undatum и для работы надо также обновить библиотеку pyiterable [3] и пока нет отдельного релиза в виде пакета для Python, но потестировать уже можно.

Для работы надо ввести ключ для API Perplexity в переменную окружения PERPLEXITY_API_KEY и вызвать команду
undatum analyze —autodoc —language <язык> <название дата файла>

Дата файл может быть сжатым, например, somedata.csv.gz или somedata.jsonl.zst

Ссылки:
[1] https://github.com/datacoon/undatum
[2] https://dateno.io
[3] https://github.com/apicrafter/pyiterable

#opensource #datatools #data
👍8🔥51
Обнаружил ещё один инструмент по проверке данных validator [1], умеет делать кросс табличные проверки данных и использует схему из спецификации Frictionless Data [2]. Пока малоизвестный, но кто знает. Он выглядит неплохо по способу реализации, но есть проблема с самой спецификацией и о ней отдельно.

Я неоднократно писал про Frictionless Data, это спецификация и набор инструментов созданных в Open Knowledge Foundation для описания и публикации наборов данных. Спецификация много лет развивалась, вокруг неё появился пул инструментов, например, свежий Open Data Editor [3] помогающий готовить датасеты для публикации на дата платформах на базе ПО CKAN.

С этой спецификацией есть лишь одна, но серьёзная проблема. Она полноценно охватывает только плоские табличные файлы. Так чтобы работать со схемой данных, использовать их SDK, тот же Open Data Editor и тд. Это даёт ей применение для некоторых видов данных с которыми работают аналитики и куда хуже с задачами дата инженерными.

Существенная часть рабочих данных с которыми я сталкивался - это не табличные данные. К примеру, в плоские таблицы плохо ложатся данные о госконтрактах или юридических лицах или объектах музейных коллекций. Там естественнее применения JSON и, соответственно, построчного NDJSON.

Для таких данных куда лучше подходят пакеты валидации данных вроде Cerberus [4]. Я использовал её в случае с реестром дата каталогов [5] в Dateno и пока не видел решений лучше.

Ссылки:
[1] https://github.com/ezwelty/validator/
[2] https://specs.frictionlessdata.io
[3] https://opendataeditor.okfn.org
[4] https://docs.python-cerberus.org/
[5] https://github.com/commondataio/dataportals-registry/

#opensource #data #datatools #dataquality
👍5😍1💯1
В рубрике как это устроено у них о том как управляют публикацией открытых данных во Франции. Частью французского национального портала открытых данных является schema.data.gouv.fr [1] на котором представлено 73 схемы с описанием структурированных данных. Эти схемы охватывают самые разные области и тематики:
- схема данных о государственных закупках
- схема данных о грантах
- схема данных архивных реестров записей
и ещё много других.

Всего по этим схемам на портале data.gouv.fr опубликовано 3246 наборов данных, чуть более 5% от всего что там размещено.

Особенность портала со схемами в том что все они опубликованы как отдельные репозитории на Github созданными из одного шаблона. А сами схемы представлены, либо по стандарту Frictionless Data - тот самый формат про таблицы о котором я писал и он тут называется TableSchema, либо в формате JSONSchema когда данные не табличные. В общем-то звучит как правильное сочетания применения этих подходов.

А для простоты публикации данных по этим схемам у был создан сервис Validata [2] в котором загружаемые данные можно проверить на соответствие этой схеме.

Ссылки:
[1] https://schema.data.gouv.fr
[2] https://validata.fr/

#opendata #datasets #data #datatools #france
👍4🔥2
Полезные ссылки про данные, технологии и не только:
- Cloudflare R2 data catalog [1] свежий каталог данных на базе Apache Iceberg от Cloudflare поверх их сервиса хранения файлов R2. Хорошая новость, потому что R2 дешевле Amazon S3 при сравнимом качестве сервиса. Жду когда Backblaze запустит аналогичный сервис для их Backblaze B2
- xorq [2] читается как zork, фреймворк для обработки данных с помощью разных движков. Там и DuckDB, и Pandas, и DataFusion и др. Удобство в универсальности, но продукт пока малоизвестный, надо смотреть
- Iceberg?? Give it a REST! [3] автор рассуждает о том что без REST каталога Iceberg малополезен и, в принципе, про развитие этой экосистемы. Многие уже рассматривают стремительный взлёт Iceberg как хайп, что не отменяет того что технология весьма любопытная.
- BI is dead. Change my mind. [4] текст от Engeneering director в Clickhouse о том как меняется (может поменяться) BI в ближайшее время. TLDR: LLM + MCP + LibreChat. Чтение полезное для всех кто занимается внутренней аналитикой и использует Clickhouse
- Roadmap: Data 3.0 in the Lakehouse Era [5] изменения в экосистеме управления данными с точки зрения венчурного капитала. Простым языком для тех кто инвестирует средства в то какие новые технологии в дата инженерии появились и развиваются.

Ссылки:
[1] https://blog.cloudflare.com/r2-data-catalog-public-beta/
[2] https://github.com/xorq-labs/xorq
[3] https://roundup.getdbt.com/p/iceberg-give-it-a-rest
[4] https://www.linkedin.com/pulse/bi-dead-change-my-mind-dmitry-pavlov-2otae/
[5] https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

#opensource #dataanalytics #datatools #dataengineering
6
По поводу каталогов данных на базы Apache Iceberg, я не поленился и развернул один на базе Cloudflare R2 о котором писал ранее и могу сказать что всё прекрасно работает, с некоторыми оговорками конечно:

- каталог в Cloudflare R2 настраивается очень просто, без танцев с бубном, но требует ввода карты даже если не надо платить (на бесплатном тарифе в R2 можно хранить до 10GB и бесплатный исходящий трафик). Фактически там просто одна галочка которую надо включить
- подключение к pyIceberg также крайне простое, и в части загрузки данных, и в части запросов к ним. Для всего есть примеры
- а вот для прямого подключения DuckDB к этому каталогу танцы с бубном явно понадобятся, потому что в документации нет ничего про R2, примеры только с Amazon S3 Tables и Amazon Glue, скорее всего всё вскоре появится, но пока ничего нет.
- не заработало передача параметров фильтрации в функции table.scan, что решается последующим запросом к не фильтрованным записям, но при фильтрации требует очень много памяти;
- какие-либо UI для каталогов Apache Iceberg пока отсутствуют. Вернее есть встроенные инструменты в облачных сервисах и возможность посмотреть на загруженное в open source каталогах типа Nessie и Lakehouse, но всё это встроенные интерфейсы. Явно напрашивается UI для Iceberg browser и доступ к таблицам из веб интерфейса через DuckDB WASM к примеру.
- спецификация предусматривает возможность задания метаданных таблицам и пространствам имён, но у меня это не сработало. Впрочем я бы метаданные по пространствам имён хранил бы отдельно. Как то это логичнее
- хотя UI для каталога нет, но UI для доступа к данным в нём можно обеспечить через UI к DuckDB. Хотя для DuckDB нет пока инструкций для подключения к R2, но есть примеры прямого чтения метаданных по файлу манифеста в JSON
- есть ощущение что для работы с Iceberg и подобными таблицами напрашивается кеширующий клиент. Собственно я не первый и не один кто об этом думает.

В целом выглядит перспективно как долгосрочная технология, но ещё много что требует оптимизации и инструментарий только на стадии становления.

#datatools #data #dataengineering #dataanalytics
🔥5🤗1
This media is not supported in your browser
VIEW IN TELEGRAM
Внезапно обнаружил прекрасное, чей то эксперимент по 3D рисованию с помощью DuckDB-WASM [1] и созданию клона Doom'а через SQL.

Тот случай когда безумная задача, необычный выбор способа её реализации и неплохие результаты.

Автор выложил код на Github [2], там его немного и всё в виде SQL + JS.

Ссылки:
[1] https://www.hey.earth/posts/duckdb-doom
[2] https://github.com/patricktrainer/duckdb-doom

#opensource #datatools
🌚4👍2💊2😱1
Подборка полезных ссылок про данные, технологии и не только:
- Wireduck [1] расширение для DuckDB для чтения файлов сохраненного сетевого трафика PCAP. Для тех кто анализирует трафик вручную или автоматически может оказаться очень полезным
- OpenDataEditor v1.4.0 [2] новая версия инструмента для публикации открытых данных от Open Knowledge Foundation. Пока не пробовал, но скоро надо будет посмотреть внимательнее.
- dataframely [3] библиотека для декларативной проверки данных в дата фреймах нативная для Polars. Есть вероятность что будет работать с хорошей производительностью. Уже напрашиваются бенчмарки для библиотек и инструментов валидации фреймов и датасетов.
- Repairing Raw Data Files with TASHEEH [4] статья про инструмент восстановления битых CSV файлов. Это результат работы команды из Hasso-Plattner Institut [5]. Код найти не удалось, хотя пишут что он открыт, скорее всего под эмбарго пока что
- Pollock [6] инструмент и бенчмарк от той же команды из HPI по измерению качества парсинга CSV файлов. Неожиданно и тут лидирует DuckDB. Удивительно что о нём никто не знает. У этой команды много инструментов и практических работ по теме data preparation.

Ссылки:
[1] https://github.com/hyehudai/wireduck
[2] https://blog.okfn.org/2025/04/21/announcement-open-data-editor-1-4-0-version-release/
[3] https://tech.quantco.com/blog/dataframely
[4] https://www.semanticscholar.org/paper/Repairing-Raw-Data-Files-with-TASHEEH-Hameed-Vitagliano/4ec3b2d9e8ef1658bfce12c75e1ad332d4f73665
[5] https://hpi.de/naumann/projects/data-preparation/tasheeh.html
[6] https://github.com/HPI-Information-Systems/Pollock

#opensource #data #datatools #dataengineering
6👍2
Ещё один инструмент построения конвееров данных sql-flow [1] через декларативное описание в конфигурации YAML и SQL запросы.

Внутри DuckDB и Apache Arrow, поддерживаются Kafka, PostgreSQL и другие источники цели для записи.

Выглядит как нечто неплохо спроектированное и описанное.

Для тех кто любит SQL и YAML - самое оно.

Ссылки:
[1] https://github.com/turbolytics/sql-flow

#opensource #datatools #dataengineering
🔥4👍1
В рубрике полезных ссылок про данные, технологии и не только:
- Как с помощью deep learning мы построили Геокодер, масштабируемый для разных стран [1] статья на хабре от команды Яндекса про геокодирование. Достаточно сложно чтобы не поверхностно, недостаточно сложно чтобы было нечитабельно. Полезно для всех кто анализирует адреса.
- Data Commons: The Missing Infrastructure for Public Interest Artificial Intelligence [2] статья Stefaan Verhulst и группы исследователей про необходимость создания Data Commons, общей инфраструктуры данных и организуемого ими конкурса на эту тему. Интересна и предыдущая статья [3].
- AI is getting “creepy good” at geo-guessing [4] о том насколько облачные AI модели стали пугающе хороши в идентификации мест по фотографии в блоге MalwareBytes
- Redis is now available under the AGPLv3 open source license [5] да, СУБД Redis с 8 версии снова AGPL. Больше открытого кода и свободных лицензий
- Hyperparam Open-Source [6] Hyperparam это инструмент визуализации больших датасетов для машинного обучения. Теперь выпустили с открытым кодом компонент HighTable [7] для отображения больших таблиц. Лицензия MIT
- AI Action Plan Database [8] база данных и более чем 4700 предложений по плану действий в отношении ИИ, инициативе Президента Трампа в США, к которой многие компании прислали свои предложения. Хорошо систематизировано (с помощью ИИ) и доступен CSV датасет.

Ссылки:
[1] https://habr.com/ru/companies/yandex/articles/877086/
[2] https://www.linkedin.com/pulse/data-commons-missing-infrastructure-public-interest-verhulst-phd-k8eec/
[3] https://medium.com/data-policy/data-commons-under-threat-by-or-the-solution-for-a-generative-ai-era-rethinking-9193e35f85e6
[4] https://www.malwarebytes.com/blog/news/2025/04/ai-is-getting-creepy-good-at-geo-guessing
[5] https://redis.io/blog/agplv3/
[6] https://hyperparam.app/about/opensource
[7] https://github.com/hyparam/hightable
[8] https://www.aiactionplan.org/

#opendata #datatools #opensource #datapolicy #ai
👍6🔥3111
Подборка ссылок про данные, технологии и не только

AI

- Transforming R&D with agentic AI: Introducing Microsoft Discovery о Microsoft Discovery, инструменте в виде агентского AI для исследователей. Акцент явно на практических исследованиях и сервисе для исследовательских центров и университетов.
- Spatial Speech Translation: Translating Across Space With Binaural Hearables научная статья про прогресс распознавания речи одновременно говорящих в толпе. Если всё сильно продвинется то тут столько возможностей для шпионского применения. Так и просится на страницы книги/рассказа про будущее.
- Claude Code SDK свежее SDK для генерации кода от Claude для тех кто хочет интегрировать Claude в свой продукт.

Открытый код
- Void альтернатива Cursor с открытым кодом. Пишут что поддерживают условно любую LLM, локальную или облачную. Форк VS Code.
- Marginalia Search - малоизвестный небольшой европейский поисковик авторы которого пытаются переосмыслить индексацию некоммерческой части интернета. Делают на небольшой европейский грант, открытый код AGPL. Любопытно, есть пара интересных идей, но нет хорошо продуманной стратегии.
- Scrapling свежая библиотека по "скрытному" парсингу сайтов. Интегрирована со всякими сервисами онлайн прокси, авторы обещают парсинг HTML быстрее чем у многих других инструментов. Выглядит полезно. Лицензия BSD-3
- Doctor инструмент для краулинга и индексации веб сайтов и предоставления собранного контента как MCP сервера. Можно сказать сайт-в-MCP. Внутри crawl4ai, DuckDB и Redis. Используют DuckDB как базу для векторного поиска, что немного необычно. Лицензия MIT
- VERT - конвертер изображений, видео, документов, аудио с открытым кодом и онлайн сервисом. Код под AGPL и веб интерфейс выглядит смазливо так что авторы явно нацелились на стартапо по модели онлайн сервис + открытый код. Плюс - работает без облака, через WebAssembly все преобразования идут на вашем компьютере. Это же и минус, потоковое преобразование сотен тысяч файлов не организовать.

#opensource #data #datatools #ai
🔥7
Полезное чтение про данные, технологии и не только:
- On file formats [1] автор систематизирует рекомендации тем кто придумывает собственные форматы файлов. Всё достаточно сжато и по делу.
- A deep dive into AlloyDB’s vector search enhancements [2] о применении векторного поиска и операций со ScanNN индексе в AlloyDB расширении для Postgres. О том как ИИ проникает в СУБД и там закрепляется.
- TrailBase [3] замена Firebase с открытым кодом
- LiamERD [4] красивые ERD диаграммы для ваших баз данных, с открытым кодом


Ссылки:
[1] https://solhsa.com/oldernews2025.html#ON-FILE-FORMATS
[2] https://cloud.google.com/blog/products/databases/alloydb-ais-scann-index-improves-search-on-all-kinds-of-data/
[3] https://github.com/trailbaseio/trailbase
[4] https://liambx.com/

#opensource #data #datatools
5
DuckLake (утиное озеро) [1] новый продукт от команды DuckDB по созданию озер данных с помощью DuckDB. Очень похоже по идеологии на Apache Iceberg и Delta Lake, но с хранением метаданных в SQL, а данных в Parquet файлах.

Тот случай когда выглядит интересно и надо приглядеться к работе на практике. Лично я чаще сталкиваюсь с редко обновляемыми данными большого объёма где транзакции сильно вторичны к скорости доступа к данным. Возможно DuckLake было бы лучшим решением для такого. А может быть и нет. Надо изучать и посмотреть на примеры внедрения.

Ссылки:
[1] https://duckdb.org/2025/05/27/ducklake

#data #opensource #datatools #duckdb
52
Полезное чтение про данные, технологии и не только:
- Behind the Curtain: A white-collar bloodbath заметка в Axios по итогам выступления Dario Amodei, главы Anthropic о кризисе работы для белых воротничков в самое ближайшее время и о том что правительствам (США) надо собирать "налог на токены". Тут есть о чём подискутировать, начиная с того что кроме правительств США и Китая никто более налогов с этого не наберёт.
- Measuring the US-China AI Gap свежее исследование с анализом разрыва в области ИИ между США и Китаем от Insikt Group. Сжатое изложение полезного материала.
- Introducing Apache Spark 4.0 вышла 4-я версия Apache Spark где много нового в его Python API включая нового легковесного API клиента да и много других полезных изменений.
- Meet the dbt Fusion Engine: the new Rust-based, industrial-grade engine for dbt важное для всех кто пользуется dbt, после покупки sdf команда dbt Labs выпустила новый движок на базе Rust и обещают что он лучше, быстрее, эффективнее и тд.
- ClickStack: A High-Performance OSS Observability Stack on ClickHouse я так понимаю что Clickhouse выбрали одним из направлений конкуренцию со стеком Elastic / OpenSearch для сбора логов и наблюдаемости (observability) и ClickStack именно такое решение с открытым кодом.
- Perplexity Labs свежий сервис от Perplexity который ориентированный на воплощение идей в реальность выполнение задач по созданию продуктов с начала и до завершения. Не они первые, не они последние, инструмент полезный, один из тех что дожирают рынок фриланса
- Opening code, opening access: The World Bank’s first open source software release первый релиз открытого кода от команды Всемирного банка, они разместили код Metadata Editor инструмента описания документов, индикаторов, геоданных и иных объектов. С акцентом на статистику, конечно же. Полезно изучить тем создает и работает с официальной статистикой.

#ai #statistics #opensource #data #datatools
73
Свежий любопытный продукт Nimtable [1] для корпоративных каталогов данных. Работает поверх каталогов Apache Iceberg, позволяет управлять каталогами, делать запросы к ним и оптимизировать таблицы с данными. Выглядит интересно и определённо стоит посмотреть его в работе.

Ссылки:
[1] https://github.com/nimtable/nimtable

#dataenginering #datatools
5
Для тех кто подумывает опубликовать данные и ориентируется на пользователей которые:
a) Хотят смотреть на структуру данных и искать по ним
б) Немного умеют в SQL

Есть достаточно давний открытый инструмент datasette. Он позволяет опубликовать базу SQLite так чтобы над ней был удобный веб интерфейс с возможностью просматривать содержимое и делать SQL запросы.

Инструмент реально простой, умеет экспортировать JSON и CSV, даёт API и очень простой стандартизованный интерфейс расширяемый разными надстройками. Его довольно часто используют госорганы в Европе и в разных некоммерческих проектах чтобы сделать какие-то CSV файлы доступными. Там и инструкции все начинаются с того что "возьмите Ваши CSV файлы и преобразуйте их в базу SQLite".

Для тех кто любит использовать открытый код для того чтобы делиться данными - это полезный инструмент.

#opendata #opensource #datatools #data
👍102
В рубрике полезных инструментов для работы с данными, много лет назад я столкнувшись с тем что регулярно надо откуда-то доставать из API датасеты и с тем что каждый раз много мороки писать скрипты самому и ещё дольше просить кого-то из разработчиков это делать, я написал утилиту apibackuper для скрейпинга через декларативное программирование в конфиг файлах.

Изначально она была для архивации данных в рамках Национального цифрового архива @ruarxive, но оказалась очень удобной во всех смыслах. К слову и в Dateno часть сборщиков метаданных работают на базе apibackuper

Как это работает? Точки подключения к API описываются в специальном конфигурационном файле в расширением cfg в формате configparser.

После запуска утилита последовательно делает запросы к API, сохраняет результаты в виде JSON файлов внутри ZIP контейнера и позволяет потом экспортировать результаты в формат построчного JSON (NDJSON).

Кроме простого перебора выгрузки из API, там же есть режим когда после перебора точки подключения с поиском/листанием данных нужно запросить карточку каждого объекта и/или скачать ассоциированные с данными файлы.

Оказалось очень удобным инструментом, сам пользуюсь им регулярно и надо бы его давно обновить, но руки не доходят потому что "и так работает".

Если бы я делал его сейчас то:
1. Использовал бы JSON файлы сжатые ZST вместо ZIP контейнера
2. Вместо конфиг файлов использовал бы YAML (это несложно, кстати)
3. Добавил бы систему расширений
4. Добавил бы многопоточный режим выгрузки
5. Добавил бы библиотеку шаблонов для подключения к разным типовым API.

И тд, но, в целом, и без этого всё работает. На скриншоте пример конфиг файла для выгрузки метаданных и файлов из системы "Артефакт" (ar.culture.ru) Минкультуры РФ и то как эти данные выглядят в самом API.

#opensource #datatools #data #scraping #API #digitalpreservation
142🔥1
Новый инструмент Vanna для Text-to-SQL операций. Под MIT лицензией, обучается на данных, а потом позволяет делать SQL запросы текстовым промптом. Поддерживает множество облачных и локальных векторных хранилищ, больших языковых моделей и баз данных.

Выглядит интересным со всех сторон: лицензия, возможности и тд.

До идеала нехватает ещё поддержки синтаксиса NoSQL (Elasticserch, MongoDB и др.)

Надо пробовать на практике.

#opensource #ai #dataengineering #datatools #dataanalytics
👍41
Полезные ссылки для работы с данными, технологиями и не только:
- DocsGPT и LocalGPT два похожих продукта для извлечения знаний и чата с локальными документами. Первый под лицензией MIT, второй под Apache 2.0. Поддерживают множество форматов документов, работают с облачными и локальными моделями ИИ. Какой лучше не знаю, надо пробовать оба продукта.
- Markitdown утилита от Microsoft по преобразованию чего угодно в формат markdown. Поддерживает документы MS Office, PDF, HTML, аудио и изображения и многое другое.
- AI Dataset generator генератор синтетических наборов данных с помощью ИИ. Умеет подключаться к разным LLM и интегрировано с инструментом визуализации Metabase. Открытый код, лицензия MIT
- gt-extras расширение для пакета great-tables для Python позволяющее рисовать красивые таблицы в Python в средах научных тетрадок Jupyter или в Quatro из фреймов данных Pandas и Polars. Удобное для всех кто занимается аналитикой на данных
- OpenAIRE changelog хороший пример версионирования и журнала большого открытого дата-продукта.

#opensource #data #datatools
👍6🔥42
Полезные ссылки про данные, технологии и не только:
- DuckDB XML Extension - расширение для DuckDB для парсинга XML/HTML, пока не пробовал и интересно как он сможет съесть XML в пару пару десятков гигабайт, но выглядит полезно
- remote-jobs - репозиторий с огромным числом IT компаний имеющих вакансии для дистанционной работы. Некоторые компании remote-only, без офисов, в некоторых гибридный подход, в любом случае список полезный для тех кто ищет работу дистанционно
- Embedding User-Defined Indexes in Apache Parquet Files - для тех кто хочет поглубже разобраться с тем что такое Parquet, разбор реализации специализированного индекса внутри Parquet файлов.
- Rethinking CLI interfaces for AI у автора рефлексия о переосмыслении подхода к созданию и развитию утилит командной строки в контексте MCP и LLM. Текст довольно короткий, но здравый
- Edit перевыпуск древнего редактора Edit для MS-DOS переписанного на Rust под множество платформ. Для тех кого пробивает на ностальгию, но у меня лично по Edit'у никакой ностальгии не осталось, он мне не нравился ещё тогда;)

#opensource #ai #datatools
👍732🔥1