Полезные ссылки про технологии, данные и не только:
- Top Programming Languages 2024 [1] от IEEE Spectrum, для интриги не назову языки лидеры. Но всё очевидно:)
- GCSE results 2024: The main trends in grades and entries [2] лонгрид про данные результатов британского экзамена GCSE от Education Datalab.
- New Washington Post AI tool sifts massive data sets [3] в Axios о том что у Washington Post новый ИИ инструмент для просеивания данных, через него уже прогнали базу видеороликов кандидатов в президенты [4].
- Using Perplexity to prepare to job interview [5] автор описывает инструкции и шаблон промпт по подготовке к интервью компании на основании описания вакансии. Эта идея имеет больше глубины чем кажется на первый взгляд. Применимо не только к подготовке к интервью, но и в принятии решения откликаться ли на вакансию.
- Benchmarking energy usage and performance of Polars and pandas [6] сравнение энергопотребления при использовании Polars и Pandas. Интересен сам факт сравнения, но объекты сравнения подобраны плохо. Сравнивать надо с теми же движками что применялись в 1 billion rows challenge, а не вот так. Pandas уже какое-то время рассматривается как референсный продукт, хуже которого быть нельзя в части скорости работы с данными.
- No, 80% of data isn’t spatial (and why that is a good thing) [7] автор опровергает, вернее, пытается опровергнуть тот факт что 80% датасетов это геоданные. Нууу, вот тут то можно и поспорить. Количественно точно не 80%. А вот качественно, вернее объёмно по хранению... До того как объёмы геномных данных не начали накапливаться десятками петабайтов, а это где-то лет 5 назад началось, геоданные, с учётом данных наук о Земле, могли по объёму быть и более 80%. Сейчас я думаю что геномные данные составляют не менее 50%: данных.
Ссылки:
[1] https://spectrum.ieee.org/top-programming-languages-2024
[2] https://ffteducationdatalab.org.uk/2024/08/gcse-results-2024-the-main-trends-in-grades-and-entries/
[3] https://www.axios.com/2024/08/20/washington-post-ai-tool-data
[4] https://www.washingtonpost.com/elections/interactive/2024/republican-campaign-ads-immigration-border-security/
[5] https://www.linkedin.com/posts/patleomi_i-just-unlocked-a-really-cool-new-use-case-activity-7232456130281549825-onDm
[6] https://pola.rs/posts/benchmark-energy-performance/
[7] https://www.spatialstack.ai/blog/no-80-of-data-isn-t-spatial-and-why-that-is-a-good-thing
#data #ai #geodata #readings
- Top Programming Languages 2024 [1] от IEEE Spectrum, для интриги не назову языки лидеры. Но всё очевидно:)
- GCSE results 2024: The main trends in grades and entries [2] лонгрид про данные результатов британского экзамена GCSE от Education Datalab.
- New Washington Post AI tool sifts massive data sets [3] в Axios о том что у Washington Post новый ИИ инструмент для просеивания данных, через него уже прогнали базу видеороликов кандидатов в президенты [4].
- Using Perplexity to prepare to job interview [5] автор описывает инструкции и шаблон промпт по подготовке к интервью компании на основании описания вакансии. Эта идея имеет больше глубины чем кажется на первый взгляд. Применимо не только к подготовке к интервью, но и в принятии решения откликаться ли на вакансию.
- Benchmarking energy usage and performance of Polars and pandas [6] сравнение энергопотребления при использовании Polars и Pandas. Интересен сам факт сравнения, но объекты сравнения подобраны плохо. Сравнивать надо с теми же движками что применялись в 1 billion rows challenge, а не вот так. Pandas уже какое-то время рассматривается как референсный продукт, хуже которого быть нельзя в части скорости работы с данными.
- No, 80% of data isn’t spatial (and why that is a good thing) [7] автор опровергает, вернее, пытается опровергнуть тот факт что 80% датасетов это геоданные. Нууу, вот тут то можно и поспорить. Количественно точно не 80%. А вот качественно, вернее объёмно по хранению... До того как объёмы геномных данных не начали накапливаться десятками петабайтов, а это где-то лет 5 назад началось, геоданные, с учётом данных наук о Земле, могли по объёму быть и более 80%. Сейчас я думаю что геномные данные составляют не менее 50%: данных.
Ссылки:
[1] https://spectrum.ieee.org/top-programming-languages-2024
[2] https://ffteducationdatalab.org.uk/2024/08/gcse-results-2024-the-main-trends-in-grades-and-entries/
[3] https://www.axios.com/2024/08/20/washington-post-ai-tool-data
[4] https://www.washingtonpost.com/elections/interactive/2024/republican-campaign-ads-immigration-border-security/
[5] https://www.linkedin.com/posts/patleomi_i-just-unlocked-a-really-cool-new-use-case-activity-7232456130281549825-onDm
[6] https://pola.rs/posts/benchmark-energy-performance/
[7] https://www.spatialstack.ai/blog/no-80-of-data-isn-t-spatial-and-why-that-is-a-good-thing
#data #ai #geodata #readings
IEEE Spectrum
The Top Programming Languages 2024
Typescript and Rust are among the rising stars
Если ты знаешь один трюк, рассказывать его нельзя. Если ты знаешь сто трюков, то можно рассказать хоть про три (с)
Недокументированные API - это те API веб сайтов которые существуют и дают доступ к данным/сервисами, но по какой-либо причине явно не документированы владельцем сайта. Это то о чём я раньше читал лекции и недавно упоминал их в контексте презентации Paul Bradshow для дата-журналистов [1]. Журналисты расследователи и дата журналисты используют их достаточно часто. Я лично регулярно сталкиваюсь с этим в задачах архивации сайтов, создания датасетов "из ничего" и в Dateno при индексировании каталогов данных.
Есть несколько трюков в их поиске которые, как оказывается, широкой публике малоизвестны:
1. Многие сайты разрабатываются так что возвращают разный контент на передаваемые заголовки "Accept". Достаточно делать запросы с заголовком "Accept: application/json" чтобы обнаружить что веб страница может быть и JSON документом. Например, сайты на базе движка Blacklight используемого в архивном деле и для ведения цифровых коллекций материалов.
2. У стандартизированных CMS множество стандартизированных интерфейсов о которых владельцы сайтов могут ничего не подозревать. Не совсем "недокументированное API", скорее плохо документированное API по умолчанию. Оно есть пока владелец сайта явным образом не найдёт где его отключить или не предпримет специальных мер по его сокрытию. Явный пример, /wp-json/ у Wordpress, а также множество других примеров в менее известных CMS. На многих порталах открытых данных каталог данных доступен по ссылке /data.json даже если на сайте ссылки на него нет.
3. Разработчики API тоже люди и думают шаблонами и даже на проде оставляют доступ к API через стандартизированные интерфейсы во внутренних ссылках или поддоменах вроде префиксов документов вроде api и api-dev и в виде внутренних ссылок /api, /api-dev, /rest и ещё с десяток других.
Когда надо найти API конкретного сайта то трюков гораздо больше. Главное чтобы такое API реально существовало😉
Ссылки:
[1] https://t.iss.one/begtin/5662
#opendata #data #tricks #readings
Недокументированные API - это те API веб сайтов которые существуют и дают доступ к данным/сервисами, но по какой-либо причине явно не документированы владельцем сайта. Это то о чём я раньше читал лекции и недавно упоминал их в контексте презентации Paul Bradshow для дата-журналистов [1]. Журналисты расследователи и дата журналисты используют их достаточно часто. Я лично регулярно сталкиваюсь с этим в задачах архивации сайтов, создания датасетов "из ничего" и в Dateno при индексировании каталогов данных.
Есть несколько трюков в их поиске которые, как оказывается, широкой публике малоизвестны:
1. Многие сайты разрабатываются так что возвращают разный контент на передаваемые заголовки "Accept". Достаточно делать запросы с заголовком "Accept: application/json" чтобы обнаружить что веб страница может быть и JSON документом. Например, сайты на базе движка Blacklight используемого в архивном деле и для ведения цифровых коллекций материалов.
2. У стандартизированных CMS множество стандартизированных интерфейсов о которых владельцы сайтов могут ничего не подозревать. Не совсем "недокументированное API", скорее плохо документированное API по умолчанию. Оно есть пока владелец сайта явным образом не найдёт где его отключить или не предпримет специальных мер по его сокрытию. Явный пример, /wp-json/ у Wordpress, а также множество других примеров в менее известных CMS. На многих порталах открытых данных каталог данных доступен по ссылке /data.json даже если на сайте ссылки на него нет.
3. Разработчики API тоже люди и думают шаблонами и даже на проде оставляют доступ к API через стандартизированные интерфейсы во внутренних ссылках или поддоменах вроде префиксов документов вроде api и api-dev и в виде внутренних ссылок /api, /api-dev, /rest и ещё с десяток других.
Когда надо найти API конкретного сайта то трюков гораздо больше. Главное чтобы такое API реально существовало😉
Ссылки:
[1] https://t.iss.one/begtin/5662
#opendata #data #tricks #readings
Telegram
Ivan Begtin
Нашёл презентацию Paul Bradshaw о недокументированных API веб-сайтов и как их искать [1]. Рецепты у него довольно простые:
- используйте Chrome Developers Tools и аналог в Firefox
- изучайте структуру ссылок и XHR типы запросов
- учитесь декодировать параметры…
- используйте Chrome Developers Tools и аналог в Firefox
- изучайте структуру ссылок и XHR типы запросов
- учитесь декодировать параметры…
В качестве мини-хобби, очень мини, я время от времени систематизирую ссылки по темам в жанре awesome list на Github с некоторой надеждой что над этими списками не я один буду работать. Надежды, как правило, не оправдываются, за редким исключением.
Список Awesome Digital Preservation, за время существования всего 14 лайков. У цифровой архивации мало фанатов, увы.
Или, например, у меня есть список Awesome Open Data software с ПО и стандартами по работе с открытыми данными. Почти всё ПО из реестра каталогов данных в Dateno, плюс ссылки на форматы файлов и стандарты обмена данными. Звездочек маловато, всего 24, не самая популярная тема.😜
Или вот Awesome Data Takeout со ссылками на сервисы получения всех своих данных из онлайн сервисов. 54 звезды, тоже, очень мало.
Для дата журналистов Awesome data journalism со списками инструментов для визуализации и не только. Набрало, 178 звезд, давно не обновлялось.
Russian Awesome Open data каталог источников открытых данных по РФ. Составлялся очень давно, как-то собрал 200 звездочек, уже практически не пополняется. Вместо него развивали datacatalogs.ru
Побольше в Awesome Forensic Tools с подборкой ресурсов в задачах цифрового дознания. Набрало 472 лайка при том что я почти не прилагал усилий по его пополнению, только один раз собрал всё вместе.
И, наконец, Awesome Status Pages собравшее 2738 лайков. Активное настолько что утомляет, сплошным потоком разработчики создают очередные сервисы проверки и публикации статусов сервисов и используют всякую маркетинговую мишуру чтобы их продвинуть. Дважды предлагали выкупить у меня эту страницу. Чувствую зря я её не продал;)
В общем-то по настоящему выстрелило только последнее, хотя списки составлять я лично люблю. Списки это же частный вид таблицы, можно ещё жанр завести. Awesome table of <something>, но в форматы Github'а или Telegram'а они плохо укладываются. Но может найдется близкий интересный формат
#opendata #datajournalism #data #digitalforensics #readings #thoughts
Список Awesome Digital Preservation, за время существования всего 14 лайков. У цифровой архивации мало фанатов, увы.
Или, например, у меня есть список Awesome Open Data software с ПО и стандартами по работе с открытыми данными. Почти всё ПО из реестра каталогов данных в Dateno, плюс ссылки на форматы файлов и стандарты обмена данными. Звездочек маловато, всего 24, не самая популярная тема.😜
Или вот Awesome Data Takeout со ссылками на сервисы получения всех своих данных из онлайн сервисов. 54 звезды, тоже, очень мало.
Для дата журналистов Awesome data journalism со списками инструментов для визуализации и не только. Набрало, 178 звезд, давно не обновлялось.
Russian Awesome Open data каталог источников открытых данных по РФ. Составлялся очень давно, как-то собрал 200 звездочек, уже практически не пополняется. Вместо него развивали datacatalogs.ru
Побольше в Awesome Forensic Tools с подборкой ресурсов в задачах цифрового дознания. Набрало 472 лайка при том что я почти не прилагал усилий по его пополнению, только один раз собрал всё вместе.
И, наконец, Awesome Status Pages собравшее 2738 лайков. Активное настолько что утомляет, сплошным потоком разработчики создают очередные сервисы проверки и публикации статусов сервисов и используют всякую маркетинговую мишуру чтобы их продвинуть. Дважды предлагали выкупить у меня эту страницу. Чувствую зря я её не продал;)
В общем-то по настоящему выстрелило только последнее, хотя списки составлять я лично люблю. Списки это же частный вид таблицы, можно ещё жанр завести. Awesome table of <something>, но в форматы Github'а или Telegram'а они плохо укладываются. Но может найдется близкий интересный формат
#opendata #datajournalism #data #digitalforensics #readings #thoughts
Подборка полезных ссылок по данным, технологиям и не только:
- Sparrow [1] движок для извлечения данных из документов и изображений, использует LLM, открытый код под GPL
- Genealogy of Relational Database Management Systems [2] хорошо нарисованная история создания баз данных, полезно для преподавания этой дисциплины. Минус только в том что она 2018 года и последние разработки не охватывает, плюс в том что большая часть фундаментальных трендов охвачена c 70х годов.
- Hamilton [3] ещё один движок с открытым кодом для преобразования данных. Выглядит неплохо, распространяется под BSD лицензией.
- Meaningful metrics: How data sharpened the focus of product teams [4] о том как устроены метрики в Duolingo. Полезное про то как устроены метрики в массовых технологических продуктах, а заодно является ответом на вопросы о том почему Duolingo устроено именно так как оно устроено.
- Bigtable transforms the developer experience with SQL support [5] анонс поддержки SQL в Bigtable. Кажется "а что тут такого?", а как сильно помогает в пользовательском опыте работы с данными там.
Ссылки:
[1] https://github.com/katanaml/sparrow
[2] https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
[3] https://github.com/dagworks-inc/hamilton
[4] https://blog.duolingo.com/growth-model-duolingo/
[5] https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable
#opensource #dataengineering #dataproducts #metrics #readings
- Sparrow [1] движок для извлечения данных из документов и изображений, использует LLM, открытый код под GPL
- Genealogy of Relational Database Management Systems [2] хорошо нарисованная история создания баз данных, полезно для преподавания этой дисциплины. Минус только в том что она 2018 года и последние разработки не охватывает, плюс в том что большая часть фундаментальных трендов охвачена c 70х годов.
- Hamilton [3] ещё один движок с открытым кодом для преобразования данных. Выглядит неплохо, распространяется под BSD лицензией.
- Meaningful metrics: How data sharpened the focus of product teams [4] о том как устроены метрики в Duolingo. Полезное про то как устроены метрики в массовых технологических продуктах, а заодно является ответом на вопросы о том почему Duolingo устроено именно так как оно устроено.
- Bigtable transforms the developer experience with SQL support [5] анонс поддержки SQL в Bigtable. Кажется "а что тут такого?", а как сильно помогает в пользовательском опыте работы с данными там.
Ссылки:
[1] https://github.com/katanaml/sparrow
[2] https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/projekte/RDBMSGenealogy/RDBMS_Genealogy_V6.pdf
[3] https://github.com/dagworks-inc/hamilton
[4] https://blog.duolingo.com/growth-model-duolingo/
[5] https://cloud.google.com/blog/products/databases/announcing-sql-support-for-bigtable
#opensource #dataengineering #dataproducts #metrics #readings
GitHub
GitHub - katanaml/sparrow: Data processing with ML, LLM and Vision LLM
Data processing with ML, LLM and Vision LLM. Contribute to katanaml/sparrow development by creating an account on GitHub.
Полезные ссылки про данные, технологии и не только:
- Classifying all of the pdfs on the internet [1] автор проанализировал 8TB PDF файлов собранных через Common Crawl и использовал Llama-3-70B для их классификации.
- Loss Rider [2] библиотека для визуализации Line Rider диаграм. Наглядный импакт!
- quarto-live [3] расширение для Quarto добавляющее интерактивности для R и Python примеров. Хорошо подойдёт для любых онлайн учебных курсов.
- A Gentle Introduction to GDAL Part 8: Reading Scientific Data Formats [4] лонгрид про обработку научных геоданных HDF и NetCDF с помощью GDAL. Выглядит полезным
- LOTUS [5] движок для запросов к запросов к Pandas с LLM
Ссылки:
[1] https://snats.xyz/pages/articles/classifying_a_bunch_of_pdfs.html
[2] https://github.com/jndean/LossRider
[3] https://r-wasm.github.io/quarto-live/
[4] https://medium.com/@robsimmon/a-gentle-introduction-to-gdal-part-8-reading-scientific-data-formats-1a1f70d5388c
[5] https://github.com/stanford-futuredata/lotus
#opensource #readings #llm #ai
- Classifying all of the pdfs on the internet [1] автор проанализировал 8TB PDF файлов собранных через Common Crawl и использовал Llama-3-70B для их классификации.
- Loss Rider [2] библиотека для визуализации Line Rider диаграм. Наглядный импакт!
- quarto-live [3] расширение для Quarto добавляющее интерактивности для R и Python примеров. Хорошо подойдёт для любых онлайн учебных курсов.
- A Gentle Introduction to GDAL Part 8: Reading Scientific Data Formats [4] лонгрид про обработку научных геоданных HDF и NetCDF с помощью GDAL. Выглядит полезным
- LOTUS [5] движок для запросов к запросов к Pandas с LLM
Ссылки:
[1] https://snats.xyz/pages/articles/classifying_a_bunch_of_pdfs.html
[2] https://github.com/jndean/LossRider
[3] https://r-wasm.github.io/quarto-live/
[4] https://medium.com/@robsimmon/a-gentle-introduction-to-gdal-part-8-reading-scientific-data-formats-1a1f70d5388c
[5] https://github.com/stanford-futuredata/lotus
#opensource #readings #llm #ai
Читаю научную статью Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web [1] от команды Google Datasets из которой немного больше понятно о том как устроен их Google Dataset Search и не могу не отметить насколько неглубоко они погружаются в тематику того чем занимаются и с насколько небольшими датасетами метаданных работают. В этом случае они работали с датасетом с метаданными о 2.7 миллионов наборах данных.
Но сама проблема которую они поднимают актуальна. К данным не работают индексы цитирования, а взаимосвязи между ними не всегда можно установить простым образом если авторы сами не указали.
Но, почему я лично считаю их статью неглубокой:
1. Кроме базовых стандартов вроде DCAT, Schema.org и других есть куда больше более сложных стандартов публикации данных, особенно научных, где эти взаимоотношения прописаны куда чётче.
2. Взаимоотношения датасетов, по хорошему, это предмет онтологического моделирования и дополнения/расширения/адаптации DCAT
3. Более сложная эвристика не только и не столько в анализе названий, как это делают авторы, а в общих схеме/структуре данных между датасетами, пересечение по содержанию и тд.
Правда работ в этой области не так много, но от ребят из Гугла я ждал большего.
Когда у меня только начинались мысли про Dateno изначально желание было с запустить процесс постоянного обогащения метаданных чтобы сделать поиск насыщеннее: больше фильтров, лучше связи между данными, больше понимания их содержимого и тд. Но, случайно, получилось собрать быстро много датасетов и по прежнему не покидает ощущение что их слишком мало. Данных всегда мало!😜
Но о том что можно выдавать пользователю инфу про схожие датасеты мысли были и есть. Можно использовать тут сложную эвристику или функции а ля ИИ заложенные в поисковый движок, а можно большее знание о самих данных и простые выборки на основе этого.
Ссылки:
[1] https://www.semanticscholar.org/paper/Relationships-are-Complicated%21-An-Analysis-of-on-Lin-Alrashed/97e3cfd5a6cf88f2b1887c5fefc76b528e92f23b
#opendata #datasets #google #dateno #readings
Но сама проблема которую они поднимают актуальна. К данным не работают индексы цитирования, а взаимосвязи между ними не всегда можно установить простым образом если авторы сами не указали.
Но, почему я лично считаю их статью неглубокой:
1. Кроме базовых стандартов вроде DCAT, Schema.org и других есть куда больше более сложных стандартов публикации данных, особенно научных, где эти взаимоотношения прописаны куда чётче.
2. Взаимоотношения датасетов, по хорошему, это предмет онтологического моделирования и дополнения/расширения/адаптации DCAT
3. Более сложная эвристика не только и не столько в анализе названий, как это делают авторы, а в общих схеме/структуре данных между датасетами, пересечение по содержанию и тд.
Правда работ в этой области не так много, но от ребят из Гугла я ждал большего.
Когда у меня только начинались мысли про Dateno изначально желание было с запустить процесс постоянного обогащения метаданных чтобы сделать поиск насыщеннее: больше фильтров, лучше связи между данными, больше понимания их содержимого и тд. Но, случайно, получилось собрать быстро много датасетов и по прежнему не покидает ощущение что их слишком мало. Данных всегда мало!
Но о том что можно выдавать пользователю инфу про схожие датасеты мысли были и есть. Можно использовать тут сложную эвристику или функции а ля ИИ заложенные в поисковый движок, а можно большее знание о самих данных и простые выборки на основе этого.
Ссылки:
[1] https://www.semanticscholar.org/paper/Relationships-are-Complicated%21-An-Analysis-of-on-Lin-Alrashed/97e3cfd5a6cf88f2b1887c5fefc76b528e92f23b
#opendata #datasets #google #dateno #readings
Please open Telegram to view this post
VIEW IN TELEGRAM
www.semanticscholar.org
[PDF] Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web | Semantic Scholar
This paper presents a comprehensive taxonomy of relationships between datasets on the Web and map these relationships to user tasks performed during dataset discovery and demonstrates that machine-learning based methods that use dataset metadata achieve multi…
TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
688.5 KB
Для тех кто интересуется международной повесткой регулирования данных International Decade for Data (2025-2035) under G20 sponsorship [1] доклад одной из рабочих группы при G20 с предложением по продвижению десятилетия данных под эгидой G20 и основных направлениях.
Удивительно что там ни слова об открытых данных, но много про управление данными в международном аспекте.
Ссылки:
[1] https://www.t20brasil.org/media/documentos/arquivos/TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
#opendata #data #policy #readings
Удивительно что там ни слова об открытых данных, но много про управление данными в международном аспекте.
Ссылки:
[1] https://www.t20brasil.org/media/documentos/arquivos/TF05_ST_06_Advocating_an_Inter66cf6ad8f1a90.pdf
#opendata #data #policy #readings
Полезное чтение про данные, технологии и не только:
- Founder Mode [1] "Режим основателя", текст от Пола Грэхема о том что часто важно чтобы основатели стартапов оставались вовлечёнными в бизнес, а не переводили его в режиме менеджмента. Вроде как очевидно, но мысль и канва рассуждения полезны чтобы освежить эту истину.
- How a startup feels [2] как ощущается жизнь в стартапе, текст от Benn Stancil, хорошо написано и просто таки ощущается. Перекликается с текстом Пола Грэхема.
- Art of Finishing [3] "Искусство завершать" , тоже полезный, уже с более техническим взглядом у автора, про то что надо доделывать то что надо доделывать применительно к программной инженерии.
Ссылки:
[1] https://paulgraham.com/foundermode.html
[2] https://substack.com/home/post/p-148046562
[3] https://www.bytedrum.com/posts/art-of-finishing/
#readings #startup
- Founder Mode [1] "Режим основателя", текст от Пола Грэхема о том что часто важно чтобы основатели стартапов оставались вовлечёнными в бизнес, а не переводили его в режиме менеджмента. Вроде как очевидно, но мысль и канва рассуждения полезны чтобы освежить эту истину.
- How a startup feels [2] как ощущается жизнь в стартапе, текст от Benn Stancil, хорошо написано и просто таки ощущается. Перекликается с текстом Пола Грэхема.
- Art of Finishing [3] "Искусство завершать" , тоже полезный, уже с более техническим взглядом у автора, про то что надо доделывать то что надо доделывать применительно к программной инженерии.
Ссылки:
[1] https://paulgraham.com/foundermode.html
[2] https://substack.com/home/post/p-148046562
[3] https://www.bytedrum.com/posts/art-of-finishing/
#readings #startup
benn.substack
How a startup feels
Why some of us are unfit for the magical mystery money machine.
Ещё один полезный для чтения текст Open Source is not a Business Model
[1] в сторону продвижения Fair Source [2] как открытие кода с ограничениями не мешающими на нём зарабатывать.
Лично я считаю что Fair Source - это модель вполне имеющая право на существование. Станет популярной - хорошо, не станет - тоже хорошо.
Острота в дискуссиях об открытом коде возникает когда проекты меняют лицензию. Вроде того же Elastic с их прыжками по лицензиям, туда и обратно. Что не отменяет качество самого продукта, отметим.
Ссылки:
[1] https://cra.mr/open-source-is-not-a-business-model
[2] https://fair.io
#opensource #readings #softwaredevelopment
[1] в сторону продвижения Fair Source [2] как открытие кода с ограничениями не мешающими на нём зарабатывать.
Лично я считаю что Fair Source - это модель вполне имеющая право на существование. Станет популярной - хорошо, не станет - тоже хорошо.
Острота в дискуссиях об открытом коде возникает когда проекты меняют лицензию. Вроде того же Elastic с их прыжками по лицензиям, туда и обратно. Что не отменяет качество самого продукта, отметим.
Ссылки:
[1] https://cra.mr/open-source-is-not-a-business-model
[2] https://fair.io
#opensource #readings #softwaredevelopment
cra.mr
Open Source is not a Business Model
So you're starting a company and you want an Open Source business model, eh? Let's talk about what that means, and how that statement is both totally valid, and makes no sense at the same time.
Полезное чтение про данные, технологии и не только:
- The Modern CLI Renaissance [1] о том как инструменты командной строки переживают ренессанс будучи переписанными, в основном, на Rust. Тоже наблюдаю эту картину и что тут скажешь, хорошо что это происходит.
- Nvidia and Oracle team up for Zettascale cluster: Available with up to 131,072 Blackwell GPUs [2] полным ходом гонка ИИ кластеров. Oracle и NVIDIA запускают в начале 2025 г. кластер на 2.4 зетафлопса, сравнивать сложно, это просто много
- Android apps are blocking sideloading and forcing Google Play versions instead [3] Google начали внедрять в андроид функцию установки приложения через Google Play если ты пытаешься поставить его из другого источника. То есть если ты из внешнего магазина загружаешь приложение которое есть в Google Play то тебя обязывают ставить то что в Google Play.
- Google will now link to The Internet Archive to add more context to Search results [4] Google теперь даёт ссылки в результатах поиска на Интернет Архив вместо их собственного кэша, на который они ранее ссылки удалили. Надеюсь они при этом дали денег Интернет Архиву, потому что как бы их не за ддосили.
Ссылки:
[1] https://gabevenberg.com/posts/cli-renaissance/
[2] https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidia-and-oracle-team-up-for-zettascale-cluster-available-with-up-to-131072-blackwell-gpus
[3] https://arstechnica.com/gadgets/2024/09/android-now-allows-apps-to-block-sideloading-and-push-a-google-play-version/
[4] https://9to5google.com/2024/09/11/google-search-internet-archive-wayback-machine/
#software #data #google #android #readings
- The Modern CLI Renaissance [1] о том как инструменты командной строки переживают ренессанс будучи переписанными, в основном, на Rust. Тоже наблюдаю эту картину и что тут скажешь, хорошо что это происходит.
- Nvidia and Oracle team up for Zettascale cluster: Available with up to 131,072 Blackwell GPUs [2] полным ходом гонка ИИ кластеров. Oracle и NVIDIA запускают в начале 2025 г. кластер на 2.4 зетафлопса, сравнивать сложно, это просто много
- Android apps are blocking sideloading and forcing Google Play versions instead [3] Google начали внедрять в андроид функцию установки приложения через Google Play если ты пытаешься поставить его из другого источника. То есть если ты из внешнего магазина загружаешь приложение которое есть в Google Play то тебя обязывают ставить то что в Google Play.
- Google will now link to The Internet Archive to add more context to Search results [4] Google теперь даёт ссылки в результатах поиска на Интернет Архив вместо их собственного кэша, на который они ранее ссылки удалили. Надеюсь они при этом дали денег Интернет Архиву, потому что как бы их не за ддосили.
Ссылки:
[1] https://gabevenberg.com/posts/cli-renaissance/
[2] https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidia-and-oracle-team-up-for-zettascale-cluster-available-with-up-to-131072-blackwell-gpus
[3] https://arstechnica.com/gadgets/2024/09/android-now-allows-apps-to-block-sideloading-and-push-a-google-play-version/
[4] https://9to5google.com/2024/09/11/google-search-internet-archive-wayback-machine/
#software #data #google #android #readings
Mildly interesting
The Modern CLI Renaissance
Over the past few years, it seems like the rate at which new CLI tools are being written has picked back up again, accelerating after seeing relatively little activity between ~1995 and ~2015. I’d like to talk about this trend I’ve noticed, where people are…
В качестве полезного чтения свежий доклад State of AI report 2024 [1]. Много любопытного не только про ИИ, но и про датасеты для машинного обучения и прогресс в исследованиях с помощью ИИ.
Ссылки:
[1] https://www.stateof.ai/2024-report-launch
#ai #reports #readings
Ссылки:
[1] https://www.stateof.ai/2024-report-launch
#ai #reports #readings
www.stateof.ai
State of AI Report 2024
The State of AI Report analyses the most interesting developments in AI. Read and download here.
В рубрике полезного чтения про данные, технологии и не только:
- G7 Toolkit for Artificial Intelligence in the Public Sector [1] руководство от стран G7 по созданию и эксплуатации доверительного ИИ в госсекторе. Иначе говоря рекомендации госслужащим по работе с ИИ.
- Data’s Role in Unlocking Scientific Potential [2] обзор инициатив и набор рекомендаций о том как доступность данных для учёных меняет науку в США. Если коротко, то больше открытости - больше науки.
- The Age of AI Nationalism and Its Effects [3] о стремительном развитии ИИ национализма
- Interesting startup idea: benchmarking cloud platform pricing [4] любопытная идея для стартапа, сравнение расценок облачных платформ. Не знаю насчёт стартапа, но проблема есть, без сомнения.
Ссылки:
[1] https://www.oecd.org/en/publications/g7-toolkit-for-artificial-intelligence-in-the-public-sector_421c1244-en.html
[2] https://www.scsp.ai/wp-content/uploads/2024/10/Datas-Role-in-Unlocking-Scientific-Potential-Paper.pdf
[3] https://www.cigionline.org/publications/the-age-of-ai-nationalism-and-its-effects/
[4] https://blog.pragmaticengineer.com/spare-cores/
#opendata #ai #ideas #readings
- G7 Toolkit for Artificial Intelligence in the Public Sector [1] руководство от стран G7 по созданию и эксплуатации доверительного ИИ в госсекторе. Иначе говоря рекомендации госслужащим по работе с ИИ.
- Data’s Role in Unlocking Scientific Potential [2] обзор инициатив и набор рекомендаций о том как доступность данных для учёных меняет науку в США. Если коротко, то больше открытости - больше науки.
- The Age of AI Nationalism and Its Effects [3] о стремительном развитии ИИ национализма
- Interesting startup idea: benchmarking cloud platform pricing [4] любопытная идея для стартапа, сравнение расценок облачных платформ. Не знаю насчёт стартапа, но проблема есть, без сомнения.
Ссылки:
[1] https://www.oecd.org/en/publications/g7-toolkit-for-artificial-intelligence-in-the-public-sector_421c1244-en.html
[2] https://www.scsp.ai/wp-content/uploads/2024/10/Datas-Role-in-Unlocking-Scientific-Potential-Paper.pdf
[3] https://www.cigionline.org/publications/the-age-of-ai-nationalism-and-its-effects/
[4] https://blog.pragmaticengineer.com/spare-cores/
#opendata #ai #ideas #readings
OECD
G7 Toolkit for Artificial Intelligence in the Public Sector
This Toolkit is a comprehensive guide designed to help policymakers and public sector leaders translate principles for safe, secure, and trustworthy Artificial Intelligence (AI) into actionable policies. AI can help improve the efficiency of internal operations…
Подборка полезного чтения про данные, технологии и не только:
- How we built a new powerful JSON data type for ClickHouse [1] статья от Павла Круглого про реализацию нового типа JSON в ClickHouse. Много подробностей и можно предполагать что новые фичи и этот тип стоит опробовать. По моему опыту ещё совсем недавно ClickHouse резко проигрывал DuckDB в разборе/импорте любого типа JSON документов. В общем надо тестировать, если всё так хорошо как написано, это может быть альтернативой MongoDB
- GERDA - German Elections Database [2] научный онлайн проект с базой по выборам в Германии с 1953 года. Доступно в виде наборов данных и пакета для языка R.
- Why techies leave Big Tech [3] почему технари покидают бигтехи? Да много почему, где-то увольнения, где-то стагнация и тупики в карьере. Автор пишет про основные причины и о том почему не надо так в бигтехи стремиться. Лично я для себя вообще не представляю что могло бы подтолкнуть там работать (ну если только бигтех не придёт с большим кошельком инвестиций в наш стартап Dateno, но это совсем другая тема)
Ссылки:
[1] https://clickhouse.com/blog/a-new-powerful-json-data-type-for-clickhouse
[2] https://www.german-elections.com/
[3] https://newsletter.pragmaticengineer.com/p/leaving-big-tech
#readings #data #datasets #opendata #careers #bigtech
- How we built a new powerful JSON data type for ClickHouse [1] статья от Павла Круглого про реализацию нового типа JSON в ClickHouse. Много подробностей и можно предполагать что новые фичи и этот тип стоит опробовать. По моему опыту ещё совсем недавно ClickHouse резко проигрывал DuckDB в разборе/импорте любого типа JSON документов. В общем надо тестировать, если всё так хорошо как написано, это может быть альтернативой MongoDB
- GERDA - German Elections Database [2] научный онлайн проект с базой по выборам в Германии с 1953 года. Доступно в виде наборов данных и пакета для языка R.
- Why techies leave Big Tech [3] почему технари покидают бигтехи? Да много почему, где-то увольнения, где-то стагнация и тупики в карьере. Автор пишет про основные причины и о том почему не надо так в бигтехи стремиться. Лично я для себя вообще не представляю что могло бы подтолкнуть там работать (ну если только бигтех не придёт с большим кошельком инвестиций в наш стартап Dateno, но это совсем другая тема)
Ссылки:
[1] https://clickhouse.com/blog/a-new-powerful-json-data-type-for-clickhouse
[2] https://www.german-elections.com/
[3] https://newsletter.pragmaticengineer.com/p/leaving-big-tech
#readings #data #datasets #opendata #careers #bigtech
ClickHouse
How we built a new powerful JSON data type for ClickHouse
We’re excited to introduce our new and significantly enhanced JSON data type, purpose-built to deliver high-performance handling of JSON data. Our core engineer, Pavel Kruglov, dives into how we built this feature on top of ClickHouse's columnar storage.
Хорошая статья в Системном блоке про судьбу ABBYY, их продукта Compreno и научного подхода в переводе текстов [1]. Если вкратце, то судьба печально, LLM ИИ пожирают мир. Я помню в 2010-х разговоры про Compreno как люди вовлеченные в этот проект его расхваливали, но вживую его так и не успел попробовать, а теперь уже и непонятно зачем.
А вообще то что пишет автор про то что простые методы обученные на бесконечном объёме данных дают больший эффект - это не только прогибель трансформацию компьютерной лингвистики, это и про будущее онтологического моделирования, это про судьбу проектов вроде Wolfram Alpha (похоже недолгую уже), это про применение LLM в моделировании и систематизации данных.
Вот я вам приведу пример, у нас в Dateno десятки миллионов карточек датасетов и далеко не у всех есть привязка к категориям, не у всех есть теги, не у всех есть геометки и тд.. Можно вложить усилия и категоризировать их вручную, а можно натравить одну или несколько LLM и проделать эту работу. Можно ещё на несколько задач LLM натравить и будет ещё больший эффект, вопрос лишь в цене запросов или развертывания open source LLM.
А что говорить про задачи онтологического моделирования во многих исследовательских проектах. Я всё жду когда появятся научные статьи с тезисами вроде "Мы заменили команду из 10 онтологов на LLM модель и результат был не хуже".
Ссылки:
[1] https://sysblok.ru/blog/gorkij-urok-abbyy-kak-lingvisty-proigrali-poslednjuju-bitvu-za-nlp/
#thoughts #readings #ai
А вообще то что пишет автор про то что простые методы обученные на бесконечном объёме данных дают больший эффект - это не только про
Вот я вам приведу пример, у нас в Dateno десятки миллионов карточек датасетов и далеко не у всех есть привязка к категориям, не у всех есть теги, не у всех есть геометки и тд.. Можно вложить усилия и категоризировать их вручную, а можно натравить одну или несколько LLM и проделать эту работу. Можно ещё на несколько задач LLM натравить и будет ещё больший эффект, вопрос лишь в цене запросов или развертывания open source LLM.
А что говорить про задачи онтологического моделирования во многих исследовательских проектах. Я всё жду когда появятся научные статьи с тезисами вроде "Мы заменили команду из 10 онтологов на LLM модель и результат был не хуже".
Ссылки:
[1] https://sysblok.ru/blog/gorkij-urok-abbyy-kak-lingvisty-proigrali-poslednjuju-bitvu-za-nlp/
#thoughts #readings #ai
Системный Блокъ
Горький урок ABBYY: как лингвисты проиграли последнюю битву за NLP - Системный Блокъ
Недавно СМИ облетела новость об увольнении всех российских программистов из компании ABBYY (тоже в прошлом российской, а теперь уже совсем нет). Теперь, когда страсти вокруг обсуждения дискриминации сотрудников по паспорту улеглись, хочется поговорить о более…
Документы бюджета Великобритании Autumn Budget 2024 [1] интересно смотреть сразу с нескольких точек зрения. Во первых они публикуют документ бюджета в виде книги [2], с графиками и очень понятными таблицами и сразу с присвоением ISBN и хорошо отформатированной веб версией [3].
А во вторых, и это интереснее, отдельным приложением идёт документ с упоминанием всех источников данных [4]. Буквально в стиле "в таком то разделе, таком то параграфе приведены данные ссылка на которых вот тут".
А также множество сопровождающих документов.
После чтения бюджетов многих стран, в разных форматах, читать этот значительно легче и понятнее. Хотя лично я жду когда же когда-нибудь появится моделирование бюджетов и госполитики интерактивными и машинными инструментами.
Ссылки:
[1] https://www.gov.uk/government/publications/autumn-budget-2024
[2] https://assets.publishing.service.gov.uk/media/672232d010b0d582ee8c4905/Autumn_Budget_2024__web_accessible_.pdf
[3] https://www.gov.uk/government/publications/autumn-budget-2024/autumn-budget-2024-html
[4] https://assets.publishing.service.gov.uk/media/6722236e4da1c0d41942a986/Autumn_Budget_2024_-_Data_Sources__1_.pdf
#openbudgets #data #opendata #uk #readings
А во вторых, и это интереснее, отдельным приложением идёт документ с упоминанием всех источников данных [4]. Буквально в стиле "в таком то разделе, таком то параграфе приведены данные ссылка на которых вот тут".
А также множество сопровождающих документов.
После чтения бюджетов многих стран, в разных форматах, читать этот значительно легче и понятнее. Хотя лично я жду когда же когда-нибудь появится моделирование бюджетов и госполитики интерактивными и машинными инструментами.
Ссылки:
[1] https://www.gov.uk/government/publications/autumn-budget-2024
[2] https://assets.publishing.service.gov.uk/media/672232d010b0d582ee8c4905/Autumn_Budget_2024__web_accessible_.pdf
[3] https://www.gov.uk/government/publications/autumn-budget-2024/autumn-budget-2024-html
[4] https://assets.publishing.service.gov.uk/media/6722236e4da1c0d41942a986/Autumn_Budget_2024_-_Data_Sources__1_.pdf
#openbudgets #data #opendata #uk #readings
Полезное чтение про данные, технологии и не только:
- All the data can be yours [1] автор пишет про реверс-инжиниринг API. Ха, подержи моё пиво! Я могу рассказать об этом куда больше, а было бы и время то и книжку написать. Но читать про опыт других всегда полезно, всегда есть что-то новое.
- AI protein-prediction tool AlphaFold3 is now open source [2] в Google заопенсорсили AlphaFold3, движок для предсказания структур протеинов с помощью ИИ. Для некоммерческого использования, конечно.
- The Death and Life of Prediction Markets at Google [3] неожиданное и любопытное, про внутренние инструменты предсказаний в Google и, заодно, немало про их внутреннюю культуру.
Ссылки:
[1] https://jero.zone/posts/reverse-engineering-apis
[2] https://www.nature.com/articles/d41586-024-03708-4
[3] https://asteriskmag.com/issues/08/the-death-and-life-of-prediction-markets-at-google
#readings #tech
- All the data can be yours [1] автор пишет про реверс-инжиниринг API. Ха, подержи моё пиво! Я могу рассказать об этом куда больше, а было бы и время то и книжку написать. Но читать про опыт других всегда полезно, всегда есть что-то новое.
- AI protein-prediction tool AlphaFold3 is now open source [2] в Google заопенсорсили AlphaFold3, движок для предсказания структур протеинов с помощью ИИ. Для некоммерческого использования, конечно.
- The Death and Life of Prediction Markets at Google [3] неожиданное и любопытное, про внутренние инструменты предсказаний в Google и, заодно, немало про их внутреннюю культуру.
Ссылки:
[1] https://jero.zone/posts/reverse-engineering-apis
[2] https://www.nature.com/articles/d41586-024-03708-4
[3] https://asteriskmag.com/issues/08/the-death-and-life-of-prediction-markets-at-google
#readings #tech
Nature
AI protein-prediction tool AlphaFold3 is now more open
Nature - The code underlying the Nobel-prize-winning tool for modelling protein structures can now be downloaded by academics.
Полезное чтение про данные, технологии и не только:
- The Death of Search [1] полезная статья о том как ИИ убивает поиск и что мы потеряем в процессе. Я бы переименовал её в The Death of Google потому что главная поисковая монополия пострадает более других. Но ещё не время пессимистичных прогнозов
- The Emergent Landscape of Data Commons: A Brief Survey and Comparison of Existing Initiatives [2] статья о инициативах публикации данных как общественного блага. Тема актуальная и про частные инициативы, и про государственные и про технологические НКО. Довольно близко к инициативам по общественной цифровой инфраструктуре (Digital Public Infrastructure, DPI)
- Congress should designate an entity to oversee data security, GAO says [3] в США Счетная палата (GAO) рекомендовала Конгрессу выбрать федеральное агентство и дать ему полномочия по защите данных. Сейчас такого агентства нет и это создаёт дополнительные риски, о чём GAO и пишут в своём докладе [4]
- OECD Digital Economy Outlook 2024 (Volume 2) [5] свежий доклад ОЭСР по цифровой экономике. Про данные мало, про многое другое много. Явные акценты на особенностях медиапотребления и на цифровой безопасности.
- How to evaluate statistical claims [6] хороший лонгрид о том как читать статистику
Ссылки:
[1] https://archive.is/ZSzAP
[2] https://medium.com/data-stewards-network/the-emergent-landscape-of-data-commons-a-brief-survey-and-comparison-of-existing-initiatives-abab7bbc4fe1
[3] https://fedscoop.com/congress-data-security-civil-rights-liberties-gao-report/
[4] https://www.gao.gov/assets/gao-25-106057.pdf
[5] https://www.oecd.org/en/publications/oecd-digital-economy-outlook-2024-volume-2_3adf705b-en.html
[6] https://seantrott.substack.com/p/how-to-evaluate-statistical-claims
#data #ai #privacy #statistics #readings
- The Death of Search [1] полезная статья о том как ИИ убивает поиск и что мы потеряем в процессе. Я бы переименовал её в The Death of Google потому что главная поисковая монополия пострадает более других. Но ещё не время пессимистичных прогнозов
- The Emergent Landscape of Data Commons: A Brief Survey and Comparison of Existing Initiatives [2] статья о инициативах публикации данных как общественного блага. Тема актуальная и про частные инициативы, и про государственные и про технологические НКО. Довольно близко к инициативам по общественной цифровой инфраструктуре (Digital Public Infrastructure, DPI)
- Congress should designate an entity to oversee data security, GAO says [3] в США Счетная палата (GAO) рекомендовала Конгрессу выбрать федеральное агентство и дать ему полномочия по защите данных. Сейчас такого агентства нет и это создаёт дополнительные риски, о чём GAO и пишут в своём докладе [4]
- OECD Digital Economy Outlook 2024 (Volume 2) [5] свежий доклад ОЭСР по цифровой экономике. Про данные мало, про многое другое много. Явные акценты на особенностях медиапотребления и на цифровой безопасности.
- How to evaluate statistical claims [6] хороший лонгрид о том как читать статистику
Ссылки:
[1] https://archive.is/ZSzAP
[2] https://medium.com/data-stewards-network/the-emergent-landscape-of-data-commons-a-brief-survey-and-comparison-of-existing-initiatives-abab7bbc4fe1
[3] https://fedscoop.com/congress-data-security-civil-rights-liberties-gao-report/
[4] https://www.gao.gov/assets/gao-25-106057.pdf
[5] https://www.oecd.org/en/publications/oecd-digital-economy-outlook-2024-volume-2_3adf705b-en.html
[6] https://seantrott.substack.com/p/how-to-evaluate-statistical-claims
#data #ai #privacy #statistics #readings
archive.is
The Death of Search - The Atlantic
archived 9 Nov 2024 22:58:57 UTC
В рубрике полезного чтения про данные, технологии и не только:
- Dismantling ELT: The Case for Graphs, Not Silos [1] размышления автора о том что такое ELT с точки зрения данных которые являются графом. Он там постоянно ссылается на закон Конвея «организации проектируют системы, которые копируют структуру коммуникаций в этой организации» и про необходимость изменения отношения к тому как данные обрабатываются.
- 7 Databases in 7 Weeks for 2025 [2] автор рассказывает о том почему стоит изучить такие базы данных как PostgreSQL, SQlite, DuckDB, Clickhouse, FoundationDB, TigerBeetle и CockroachDB. Подборка хорошая, стоит изучить
- reactable-py [3] код для быстрой визуализации датафреймов. Мне он чем то напомнил проект Datasette [4], но очень отдалённо. Удобно тем что хорошо встраивается в веб страницу и может быть полезно в дата сторителлинге.
- Field Boundaries for Agriculture (fiboa) [5] малоизвестный пока что проект по сбору наборов данных и инструментов для создания данных в сельском хозяйстве, конкретно в определении границ участков. Сами данные публикуют в Source Cooperative, каталоге больших геоданных [6]
- Common Operational Datasets [7] [8] [9] общие операционные наборы достоверных данных необходимые для принятия решений. Термин UN OCHA определяющий ключевые данные необходимые для противодействия стихийным бедствиям. Чем то напоминает концепцию high-value datasets используемую в Евросоюзе.
Ссылки:
[1] https://jack-vanlightly.com/blog/2024/11/26/dismantling-elt-the-case-for-graphs-not-silos
[2] https://matt.blwt.io/post/7-databases-in-7-weeks-for-2025/
[3] https://machow.github.io/reactable-py/get-started/index.html
[4] https://datasette.io
[5] https://github.com/fiboa
[6] https://source.coop/
[7] https://cod.unocha.org
[8] https://data.humdata.org/event/cod/
[9] https://humanitarian.atlassian.net/wiki/spaces/imtoolbox/pages/42045911/Common+Operational+Datasets+CODs
#opendata #opensource #readings #dataviz #dataframes
- Dismantling ELT: The Case for Graphs, Not Silos [1] размышления автора о том что такое ELT с точки зрения данных которые являются графом. Он там постоянно ссылается на закон Конвея «организации проектируют системы, которые копируют структуру коммуникаций в этой организации» и про необходимость изменения отношения к тому как данные обрабатываются.
- 7 Databases in 7 Weeks for 2025 [2] автор рассказывает о том почему стоит изучить такие базы данных как PostgreSQL, SQlite, DuckDB, Clickhouse, FoundationDB, TigerBeetle и CockroachDB. Подборка хорошая, стоит изучить
- reactable-py [3] код для быстрой визуализации датафреймов. Мне он чем то напомнил проект Datasette [4], но очень отдалённо. Удобно тем что хорошо встраивается в веб страницу и может быть полезно в дата сторителлинге.
- Field Boundaries for Agriculture (fiboa) [5] малоизвестный пока что проект по сбору наборов данных и инструментов для создания данных в сельском хозяйстве, конкретно в определении границ участков. Сами данные публикуют в Source Cooperative, каталоге больших геоданных [6]
- Common Operational Datasets [7] [8] [9] общие операционные наборы достоверных данных необходимые для принятия решений. Термин UN OCHA определяющий ключевые данные необходимые для противодействия стихийным бедствиям. Чем то напоминает концепцию high-value datasets используемую в Евросоюзе.
Ссылки:
[1] https://jack-vanlightly.com/blog/2024/11/26/dismantling-elt-the-case-for-graphs-not-silos
[2] https://matt.blwt.io/post/7-databases-in-7-weeks-for-2025/
[3] https://machow.github.io/reactable-py/get-started/index.html
[4] https://datasette.io
[5] https://github.com/fiboa
[6] https://source.coop/
[7] https://cod.unocha.org
[8] https://data.humdata.org/event/cod/
[9] https://humanitarian.atlassian.net/wiki/spaces/imtoolbox/pages/42045911/Common+Operational+Datasets+CODs
#opendata #opensource #readings #dataviz #dataframes
Jack Vanlightly
Dismantling ELT: The Case for Graphs, Not Silos — Jack Vanlightly
ELT is a bridge between silos. A world without silos is a graph. I’ve been banging my drum recently about the ills of Conway’s Law and the need for low-coupling data architectures. In my Curse of Conway and the Data Space blog post, I explored how Conway’s…
Свежий интересный доклад The UK government as a data provider for AI [1] о том используют ли LLM госсайты Великобритании и официальные государственные данные. Результаты таковы что контент с официальных сайтов активно используется, а датасеты из data.gov.uk практически нет. Результат совершенно неудивительный поскольку основные LLM тренировали на бесконечном количестве текстов собранных с помощью Common Crawl или своими ботам или из поискового индекса, как у Google и Microsoft. В общем-то не на данных, строго говоря. Причин этому много, я бы обозначил основной причиной что датасеты для ИИ в государстве никто не готовил и датасеты с большим числом текстов также.
Рекомендации в докладе вполне разумные и включают:
1. Публиковать данные более пригодными для ИИ (AI ready)
2. Сделать ревизию доступности контента для AI краулеров.
3. Создать национальную дата библиотеку для AI
Последний пункт это про создание специализированного каталога данных высокого качества. О таких проектах давно и много где говорят, вероятность появления его в Великобритании растёт, это не первый доклад где я о таком читаю.
Текст доклада опубликован Институтом открытых данных (Великобритания) и у них же в этом году выходило ещё одно исследование From co-generated data to generative AI [2] о том как устроено обучение ИИ на данных краудсорсинга и соцсетей. Ничего революционного, но чтение полезное.
Ссылки:
[1] https://theodi.cdn.ngo/media/documents/The_UK_government_as_a_data_provider_for_AI.pdf
[2] https://wp.oecd.ai/app/uploads/2024/12/From-co-generated-data-to-generative-AI-1.pdf
#opendata #datasets #ai #uk #readings
Рекомендации в докладе вполне разумные и включают:
1. Публиковать данные более пригодными для ИИ (AI ready)
2. Сделать ревизию доступности контента для AI краулеров.
3. Создать национальную дата библиотеку для AI
Последний пункт это про создание специализированного каталога данных высокого качества. О таких проектах давно и много где говорят, вероятность появления его в Великобритании растёт, это не первый доклад где я о таком читаю.
Текст доклада опубликован Институтом открытых данных (Великобритания) и у них же в этом году выходило ещё одно исследование From co-generated data to generative AI [2] о том как устроено обучение ИИ на данных краудсорсинга и соцсетей. Ничего революционного, но чтение полезное.
Ссылки:
[1] https://theodi.cdn.ngo/media/documents/The_UK_government_as_a_data_provider_for_AI.pdf
[2] https://wp.oecd.ai/app/uploads/2024/12/From-co-generated-data-to-generative-AI-1.pdf
#opendata #datasets #ai #uk #readings
Полезные ссылки про данные, технологии и не только:
- The DuckDB Avro Extension [1] новое расширение для DuckDB для поддержки формата файлов Apache Avro. Не то чтобы Avro часто встречается в дикой природе, но во многих корпоративных стеках данных он есть и хорошо что к нему есть расширение. Заодно полезное чтение про внутреннее устройство и специфику этого формата.
- Prototype Fund: a successful story of project replication within the Open Knowledge Network [2] в блоке Open Knowledge Foundation видео с рассказом про Prototype Fund в Германии и Швейцарии. Это специальный фонд для поддержки проектов с открытым кодом, про открытые данные и вообще про технологические аспекты открытости (например, стандарты) в контексте цифровой общей инфраструктуры. Иначе говоря поддержка открытых проектов создаваемых для общественного блага. Жаль этот опыт трудновоспроизводим.
- The History of the Decline and Fall of In-Memory Database Systems [3] приятный текст про "взлет и падение" баз данных работавших только в памяти и о том почему почти все СУБД вернулись к модели постоянного хранения. Спойлер:потому что цены гигабайт на SSD падают быстрее чем цены за гигабайт RAM
- Researchers achieve 96% accuracy in detecting phishing emails with open-source AI [4] вот полезное применение LLM, ловить фишинговые письма. Правда, сдаётся мне что есть способы и попроще, но и этот весьма неплох. Причём 95% точности достигается довольно легковесной моделью, а 96% уже с существенно большими требованиями
- An Open Source Python Library for Anonymizing Sensitive Data [5] статья об анонимизации данных и открытой библиотеке авторов о том как ей пользоваться.
Ссылки:
[1] https://duckdb.org/2024/12/09/duckdb-avro-extension
[2] https://blog.okfn.org/2024/12/05/prototype-fund-a-successful-story-of-project-replication-within-the-open-knowledge-network/
[3] https://cedardb.com/blog/in_memory_dbms/
[4] https://the-decoder.com/researchers-achieve-96-accuracy-in-detecting-phishing-emails-with-open-source-ai/
[5] https://www.nature.com/articles/s41597-024-04019-z
#opensource #ai #rdbms #readings
- The DuckDB Avro Extension [1] новое расширение для DuckDB для поддержки формата файлов Apache Avro. Не то чтобы Avro часто встречается в дикой природе, но во многих корпоративных стеках данных он есть и хорошо что к нему есть расширение. Заодно полезное чтение про внутреннее устройство и специфику этого формата.
- Prototype Fund: a successful story of project replication within the Open Knowledge Network [2] в блоке Open Knowledge Foundation видео с рассказом про Prototype Fund в Германии и Швейцарии. Это специальный фонд для поддержки проектов с открытым кодом, про открытые данные и вообще про технологические аспекты открытости (например, стандарты) в контексте цифровой общей инфраструктуры. Иначе говоря поддержка открытых проектов создаваемых для общественного блага. Жаль этот опыт трудновоспроизводим.
- The History of the Decline and Fall of In-Memory Database Systems [3] приятный текст про "взлет и падение" баз данных работавших только в памяти и о том почему почти все СУБД вернулись к модели постоянного хранения. Спойлер:
- Researchers achieve 96% accuracy in detecting phishing emails with open-source AI [4] вот полезное применение LLM, ловить фишинговые письма. Правда, сдаётся мне что есть способы и попроще, но и этот весьма неплох. Причём 95% точности достигается довольно легковесной моделью, а 96% уже с существенно большими требованиями
- An Open Source Python Library for Anonymizing Sensitive Data [5] статья об анонимизации данных и открытой библиотеке авторов о том как ей пользоваться.
Ссылки:
[1] https://duckdb.org/2024/12/09/duckdb-avro-extension
[2] https://blog.okfn.org/2024/12/05/prototype-fund-a-successful-story-of-project-replication-within-the-open-knowledge-network/
[3] https://cedardb.com/blog/in_memory_dbms/
[4] https://the-decoder.com/researchers-achieve-96-accuracy-in-detecting-phishing-emails-with-open-source-ai/
[5] https://www.nature.com/articles/s41597-024-04019-z
#opensource #ai #rdbms #readings