💰 Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget
Вышел официальный код и чекпоинты для MicroDiffusion от Sony.
Советую прочитать статью, в ней авторы подробно рассказывают о том, как они обучили модель уровня SD1 (MicroDiT) за $1890, используя диффузионный трансформер с MoE и наборы реальных+синтетических данных на 37M.
Теперь любой желающий может обучить модель Stable Diffusion v1/v2-уровня с нуля всего за 2,5 дня, используя 8 графических процессоров H100 (стоимостью < $2000)
Здесь можно посмотреть конфигурацию обучения для каждого этапа.
▪Paper: https://arxiv.org/abs/2407.15811v1
▪Github: https://github.com/SonyResearch/micro_diffusion
▪HF: https://huggingface.co/VSehwag24/MicroDiT
▪Dataset: https://github.com/SonyResearch/micro_diffusion/blob/main/micro_diffusion/datasets/README.md
@ai_machinelearning_big_data
#stablediffusion #guide #sd #ml #sony
Вышел официальный код и чекпоинты для MicroDiffusion от Sony.
Советую прочитать статью, в ней авторы подробно рассказывают о том, как они обучили модель уровня SD1 (MicroDiT) за $1890, используя диффузионный трансформер с MoE и наборы реальных+синтетических данных на 37M.
Теперь любой желающий может обучить модель Stable Diffusion v1/v2-уровня с нуля всего за 2,5 дня, используя 8 графических процессоров H100 (стоимостью < $2000)
Здесь можно посмотреть конфигурацию обучения для каждого этапа.
▪Paper: https://arxiv.org/abs/2407.15811v1
▪Github: https://github.com/SonyResearch/micro_diffusion
▪HF: https://huggingface.co/VSehwag24/MicroDiT
▪Dataset: https://github.com/SonyResearch/micro_diffusion/blob/main/micro_diffusion/datasets/README.md
@ai_machinelearning_big_data
#stablediffusion #guide #sd #ml #sony
❤50🔥44👍20🫡2🥱1
Это одна из самых сложных задач в семантической генерации:
🔸 нужно сохранить структуру сцены
🔸 вставить объект по текстовому описанию
🔸 и найти уместное место, а не просто налепить поверх
Большинство моделей с этим не справляются — объект добавляется не к месту или портит фон.
Новый метод Add-it от NVIDIA решает эту задачу без обучения модели.
Он расширяет механизм внимания в диффузионных моделях, чтобы учитывать сразу три источника:
1. Оригинальное изображение
2. Текстовый промпт
3. Промежуточную сгенерированную картинку
📌 Такой подход позволяет:
– сохранить геометрию сцены
– встроить объект туда, где он действительно мог бы быть
– не терять мелкие детали и текстуры
📊 Результаты:
– Add-it без дообучения обходит supervised‑модели
– На новом бенчмарке Additing Affordance показывает SOTA результат по «естественности размещения»
– В слепых тестах люди выбирают его в 80% случаев
– Улучшает метрики качества генерации
@ai_machinelearning_big_data
#NVIDIA #Diffusion #Addit #StableDiffusion #AIgen #ControllableGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
❤75🔥31👍26👻7💯5