Это одна из самых сложных задач в семантической генерации:
🔸 нужно сохранить структуру сцены
🔸 вставить объект по текстовому описанию
🔸 и найти уместное место, а не просто налепить поверх
Большинство моделей с этим не справляются — объект добавляется не к месту или портит фон.
Новый метод Add-it от NVIDIA решает эту задачу без обучения модели.
Он расширяет механизм внимания в диффузионных моделях, чтобы учитывать сразу три источника:
1. Оригинальное изображение
2. Текстовый промпт
3. Промежуточную сгенерированную картинку
📌 Такой подход позволяет:
– сохранить геометрию сцены
– встроить объект туда, где он действительно мог бы быть
– не терять мелкие детали и текстуры
📊 Результаты:
– Add-it без дообучения обходит supervised‑модели
– На новом бенчмарке Additing Affordance показывает SOTA результат по «естественности размещения»
– В слепых тестах люди выбирают его в 80% случаев
– Улучшает метрики качества генерации
@ai_machinelearning_big_data
#NVIDIA #Diffusion #Addit #StableDiffusion #AIgen #ControllableGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
❤75🔥31👍26👻7💯5