Unsolth выложила в открытый доступ в своем репозитории на Github больше сотни готовых ipynb-блокнотов для запуска различных операций в Google Collab практически всех популярных семейств языковых моделей, BERT, TTS-моделей и VLM:
Блокноты включают пошаговые руководства и примеры для вызова инструментов, классификации, синтетических данных, подготовки сетов, инференса и файнтюна моделей и
примеры методов GRPO, DPO, SFT, Continued Pretraining, Reasoning и других.
Unsloth известна тем, что помогает делать большие языковые модели быстрее, компактнее и доступнее при помощи динамического квантования, что позволяет запускать их без сильной потери качества . Их технологии ускоряют обучение и настройку ИИ-моделей в 2 раза и экономят до 70% памяти. Инструменты Unsloth, на сегодняшний день, скачали более 10 млн раз.
Есть подробная документация по использованию, а для тех, кто больше привык к Kaggle - такой же набор блокнотов для запуска на этой платформе.
@ai_machinelearning_big_data
#AI #ML #LLM #Notebooks #Github #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥106👍25❤24❤🔥9🌭3
Добиться от LLM нужного поведения - задача нетривиальная, особенно в тонкой настройке с помощью LoRA.
LoRA позволяет адаптировать модель под конкретные задачи, не переобучая ее целиком, но результат сильно зависит от правильно подобранных гиперпараметров. Небольшой, но очень полезный гайд от Unsloth - ваш гид по основным настройкам LoRA, которые помогут повысить точность, стабильность и качество, попутно снижая риск галлюцинаций и переобучения.
Успешное обучение - это, прежде всего, баланс. Слишком высокая скорость обучения может ускорить начальное обучение, но рискует дестабилизировать модель или привести к пропускам оптимальных решений. Слишком низкая замедлит процесс и, как ни странно, тоже помешает обучению или переобучит вашу LoRa. Оптимальный диапазон обычно лежит между 1e-4 и 5e-5.
Аналогично с эпохами: прогонять данные слишком много раз значит рисковать тем, что модель просто "зазубрит" датасет, потеряв способность к обобщению. Недобор эпох грозит недообучением, это когда модель так и не улавливает нужные паттерны.
Но вот, вы разобрались с эпохами и скоростью обучения и добрались до специфичных параметров LoRA, например - ранг. Это один из ключевых параметров, он определяет размерность "адаптеров", добавляемых к модели.
Больший ранг дает больше "места" для обучения, но требует больше памяти и времени. Следующий после ранга:
lora_alpha
. Это своего рода усилитель для этих адаптеров. Часто его ставят равным рангу или удваивают, чтобы усилить влияние дообученных весов.Unsloth предлагает в своих ноутбуках отличные дефолтные параметры, основанные на большом накопленном опыте файнтюна моделей и предлагает проверенные решения для управления ресурсами и стабильностью.
Подбор гиперпараметров — это всегда итеративный процесс. Экспериментируйте, сверяйтесь с лучшими практиками, и тогда ваши дообученные модели покажут наилучшие результаты.
#AI #ML #LLM #Tutorial #LoRA #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍27🔥10🥰5