227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥Machine learning Interview Questions

Вопросы и ответы с собеседований.

Большая, подборка вопросов и ответов с собеседований по ML, Data Science,Ai, статистике, теории вероятностей python, SQL.

🔝 Пособие для технических интервью.

Здесь представлены бесплатные и курируемые материалы по подготовке к техническим собеседованиям для занятых инженеро. Более 500 000 человек воспользовались этим пособием.

ML
100 вопросов c собесов по машинному обучению 2024
Сборник ответов с собесов по машинному обучению от FAANG, Snapchat, LinkedIn.
Facebook. Вопросы по машинному обучению 2024 год
Google руководство по прохождению собеса в 2024 году
Подготовка к собеседованию по ML: ответы на основные вопросы
14 типичных вопросов с собеседования по ML
Вопросы для собеседования на позицию ML-инженера
Решения вступительных испытаний в ШАД
Решения вступительных испытаний в ШАД архив
AI Interviews at Apple, OpenAI, Bloomberg & JP Morgan – What to Expect
Apple Machine Learning Engineer (MLE) Interview Guide
Junior ML-инженер | Выпуск 1 | Собеседование
Успешное собеседование в Яндекс
Как я проходил собеседования на Machine Learning Engineer
NLP
100 вопросов и ответов для интервью по NLP
Топ-50 вопросов собеседований NLP
Вопросы по NLP 2024 года
Еще 100 NLP вопросов
DS
Материалы для подготовки к интервью data science
Вопросы/ответы DS
100 вопросов для подготовки к собесу Data Science
Временные ряды. Топ 50 вопросов
Python

100 вопросов для подготовки к собесу Python
50 вопросов по PyTorch
45 Вопросов с собеседований Pandas
400 самых популярных вопросов-ответов для Python-разработчика.
100 вопросов видео
LeetCode Pandas
AI
30 вопросов промпт инжинирингу
15 вопросов по LLM и AI
27 Вопросов по Chatgpt
Math
Вопросы с собеседований по статистике
Вопросы по теории вероятности
LeetCode: разные решения с кодом
Top 75 Statistics Interview Questions
40 вопросов по статистике с собеседований на должность Data Scientist
Statistics Interview Questions & Answers for Data Scientists
SQL
Задачи с собеседований SQL

Подборка будет постепенно обновляться, делитесь в комментариях полезными ресурсами, которые стоит сюда добавить.

#interview #вопросыссобесов #ml #ds

@ai_machinelearning_big_data
👍1009🔥9🤬2😨2👌1
🌟 Numpy QuadDType: Четырехкратная точность в Python.

NumPy-QuadDType (numpy_quaddtype) — это реализация пользовательского типа данных (dtype) для NumPy, которая обеспечивает настоящую арифметику с плавающей точкой четверной точности на разных платформах.

Проект направлен на решение давних проблем с np.longdouble, предлагая согласованный, высокоточный тип с плавающей точкой независимо от базовой архитектуры системы, а также обеспечивая обратную совместимость long double.

Ядро numpy_quaddtype построено вокруг на двух ключевых компонентов:

🟢скалярный тип QuadPrecision, представляющий отдельные скаляры четверной точности;

🟢тип данных NumPy QuadPrecDType, позволяющий использовать эти скаляры четверной точности в массивах и операциях NumPy.

Отличительная черта numpy_quaddtype - его подход с двойным бэкэндом:

🟠SLEEF (библиотека SIMD для оценки элементарных функций): этот бэкэнд использует тип Sleef_quad из библиотеки SLEEF, предоставляя настоящую 128-битную учетверенную точность.

🟠Long Double: этот бэкэнд использует собственный тип long double, который может обеспечивать точность до 80 бит в некоторых системах, обеспечивая совместимость с np.longdouble.

Гибкость архитектуры numpy_quaddtype наследуется от компонентов ее ядра: QuadPrecisionObject, хамелеоноподобная структура, которая может переключаться между формами:

typedef union {  
Sleef_quad sleef_value;
long double longdouble_value;
} quad_value;

typedef struct {
PyObject_HEAD
quad_value value;
QuadBackendType backend;
} QuadPrecisionObject;


QuadPrecDTypeObject, который действует как мост, позволяя высокоточным числам гармонично работать в массивах и операциях NumPy:

typedef struct {  
PyArray_Descr base;
QuadBackendType backend;
} QuadPrecDTypeObject;


Он позволяет переключаться между бекэндами Sleef_quad (для SLEEF) и long double во время выполнения:

>>> import numpy as np  
>>> import numpy_quaddtype as npq

# Using SLEEF backend (default)
>>> x = npq.QuadPrecision(3.5)
>>> x = npq.QuadPrecision(3.5, backend='sleef')
>>> repr(x)
QuadPrecision('3.5e+000', backend='sleef')

# Using longdouble backend
>>> y = npq.QuadPrecision(2.5, backend='longdouble')
>>> repr(y)
QuadPrecision('2.5e+000', backend='longdouble')

# Creating a NumPy array with QuadPrecision dtype
>>> z = np.array([x, x], dtype=npq.QuadPrecDType()) # SLEEF
>>> print(z)
[QuadPrecision('3.5e+000', backend='sleef')
QuadPrecision('3.5e+000', backend='sleef')]

>>> z = np.array([y, y], dtype=npq.QuadPrecDType("longdouble")) # longdouble
>>> print(z)
[QuadPrecision('2.5e+000', backend='longdouble')
QuadPrecision('2.5e+000', backend='longdouble')]


В тестах numpy_quaddtype с бэкендом SLEEF показал точность в 34 десятичных знаков. ULP (единица в младшем разряде) для основных арифметических операций ≤ 0,5000000001, а для трансцендентных функций ≤ 1,0.

C бэкендом Long Double показал точность, зависящую от платформы: 18-19 десятичных знаков в Linux и 15-17 в Windows.

В настоящее время ведётся подготовка к выпуску numpy_quaddtype в виде пакета Python, доступного через PyPI и conda. Также планируется направить предложение NEP для интеграции numpy_quaddtype в экосистему NumPy и рассмотреть TLFloat как потенциальную замену SLEEF в будущих версиях.

▶️Читать полную статью с демо возможностей numpy_quaddtype на примере визуализации множества Мандельброта при экстремальном увеличении и моделирование квантового гармонического осциллятора для двухатомных молекул.


@ai_machinelearning_big_data

#AI #ML #DS #Python #NumPy
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍136🌚3
👍 Marimo — это блокнот с реактивным исполнением кода, обеспечивающий автоматическое обновление зависимых ячеек при изменении данных или кода.

По сути это улучшенная альтернатива Jupyter.​

Как работает Marimo?

▪️ При изменении значения переменной или взаимодействии с UI-элементом, Marimo автоматически выполняет все ячейки, зависящие от этой переменной, поддерживая консистентность кода и результатов. ​

Отличия от Jupyter:

▪️ Формат файлов: Marimo сохраняет блокноты как чистые Python-файлы (.py), облегчая интеграцию с системами контроля версий, в отличие от Jupyter, использующего формат JSON (.ipynb). ​

▪️ Реактивность: В Marimo изменение данных автоматически обновляет все связанные ячейки, тогда как в Jupyter это требует ручного выполнения. ​

Основные преимущества Marimo:

▪️ Интерактивность: Встроенные UI-элементы, такие как слайдеры и выпадающие списки, синхронизируются с кодом без необходимости в дополнительных настройках. ​

▪️ Отсутствие скрытых состояний и детерминированный порядок выполнения обеспечивают надежность результатов. ​

▪️ Поддерживает возможность исполнять блокноты как скрипты, импортировать их в другие проекты и разворачивать как веб-приложения. ​

Marimo представляет собой мощный инструмент для разработчиков и исследователей, стремящихся к более эффективной и надежной работе с Python-блокнотами.

В галерее Marimo представлены блокноты на все случае жизни, созданные сообществом, демонстрирующие различные возможности и сценарии использования Marimo.​

🟡Еще примеры
🟡Документация
🟡Канал Marimo
🟡Видеообзор
🟡Урок по работе с Marimo

@ai_machinelearning_big_data


#marimo #ds #ml #tools #opensource #datascience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥145🤔5
🌟 NVIDIA cuOpt: GPU-решатель для оптимизации решений.

NVIDIA опубликовала в открытом доступе свой проект cuOpt. Это набор инструментов оптимизации, который использует ресурсы и возможности GPU для решения сложных задач линейного программирования, маршрутизации и логистики.

cuOpt помогает находить эффективные решения для проблем с миллионами переменных, где традиционные методы терпят крах., превращая «нерешаемые» задачи в реальные решения, без жертвования масштабом или скоростью. Это, своего рода, «турбокомпрессоре» для задач, где время и точность критически важны, от доставки товаров до расписаний производства.

cuOpt состоит из C++-движка и API (Python, C и другие), которые работают как обертки, которые дают возможность гибко интегрировать библиотеку в разные проекты.

Для задач маршрутизаций (TSP, VRP, PDP) cuOpt генерирует начальные решения, а затем улучшает их итеративно, используя эвристические алгоритмы. Это не «лобовое» вычисление всех вариантов, а умный поиск, который экономит ресурсы и время.

Методы работы с линейным программированием (LP) и смешанными целочисленными задачами (MILP) тоже уникальны. Для LP применяется PDLP — алгоритм первого порядка, который использует градиентный спуск и работает на GPU, альтернативно запускаясь на CPU с симплекс-методом.

Смешанное целочисленное программирование - это метод математической оптимизации, позволяющий решать задачи с использованием смеси непрерывных переменных (которые могут иметь любое значение, включая десятичные и дробные), дискретных переменных и двоичных переменных.


В MILP немного сложнее: на GPU выполняются эвристики для поиска допустимых решений (локальный поиск, «feasibility pump»), а CPU занимается ветвлениями и границами, улучшая оценку. Решения между GPU и CPU обмениваются в реальном времени, создавая гибридную систему.

▶️ NVIDIA cuOpt предлагает несколько вариантов развертывания, адаптированных под разные задачи: pip, conda или готовый контейнер Docker / NSG.

Еще поддерживаются (с минимальным рефакторингом) инструменты AMPL и PuLP, с помощью которых сценарии использования cuOpt значительно расширяются.

В репозитории проекта разработчики собрали примеры и Jupyter-ноутбуки, которые можно запустить локально или в облачных сервисах: Google Colab (с выбором GPU-среды) или NVIDIA Launchable.


📌 Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DS #NVIDIA #CuOPT
Please open Telegram to view this post
VIEW IN TELEGRAM
44👍37🔥16🥰3