🔥Machine learning Interview Questions
Вопросы и ответы с собеседований.
Большая, подборка вопросов и ответов с собеседований по ML, Data Science,Ai, статистике, теории вероятностей python, SQL.
🔝 Пособие для технических интервью.
Здесь представлены бесплатные и курируемые материалы по подготовке к техническим собеседованиям для занятых инженеро. Более 500 000 человек воспользовались этим пособием.
ML
▪100 вопросов c собесов по машинному обучению 2024
▪Сборник ответов с собесов по машинному обучению от FAANG, Snapchat, LinkedIn.
▪Facebook. Вопросы по машинному обучению 2024 год
▪Google руководство по прохождению собеса в 2024 году
▪ Подготовка к собеседованию по ML: ответы на основные вопросы
▪ 14 типичных вопросов с собеседования по ML
▪ Вопросы для собеседования на позицию ML-инженера
▪ Решения вступительных испытаний в ШАД
▪ Решения вступительных испытаний в ШАД архив
▪AI Interviews at Apple, OpenAI, Bloomberg & JP Morgan – What to Expect
▪Apple Machine Learning Engineer (MLE) Interview Guide
▪Junior ML-инженер | Выпуск 1 | Собеседование
▪Успешное собеседование в Яндекс
▪Как я проходил собеседования на Machine Learning Engineer
NLP
▪100 вопросов и ответов для интервью по NLP
▪Топ-50 вопросов собеседований NLP
▪ Вопросы по NLP 2024 года
▪ Еще 100 NLP вопросов
DS
▪Материалы для подготовки к интервью data science
▪ Вопросы/ответы DS
▪100 вопросов для подготовки к собесу Data Science
▪Временные ряды. Топ 50 вопросов
Python
▪100 вопросов для подготовки к собесу Python
▪ 50 вопросов по PyTorch
▪45 Вопросов с собеседований Pandas
▪400 самых популярных вопросов-ответов для Python-разработчика.
▪100 вопросов видео
▪LeetCode Pandas
AI
▪30 вопросов промпт инжинирингу
▪ 15 вопросов по LLM и AI
▪27 Вопросов по Chatgpt
Math
▪ Вопросы с собеседований по статистике
▪ Вопросы по теории вероятности
▪ LeetCode: разные решения с кодом
▪Top 75 Statistics Interview Questions
▪40 вопросов по статистике с собеседований на должность Data Scientist
▪Statistics Interview Questions & Answers for Data Scientists
SQL
▪Задачи с собеседований SQL
Подборка будет постепенно обновляться, делитесь в комментариях полезными ресурсами, которые стоит сюда добавить.
#interview #вопросыссобесов #ml #ds
@ai_machinelearning_big_data
Вопросы и ответы с собеседований.
Большая, подборка вопросов и ответов с собеседований по ML, Data Science,Ai, статистике, теории вероятностей python, SQL.
🔝 Пособие для технических интервью.
Здесь представлены бесплатные и курируемые материалы по подготовке к техническим собеседованиям для занятых инженеро. Более 500 000 человек воспользовались этим пособием.
ML
▪100 вопросов c собесов по машинному обучению 2024
▪Сборник ответов с собесов по машинному обучению от FAANG, Snapchat, LinkedIn.
▪Facebook. Вопросы по машинному обучению 2024 год
▪Google руководство по прохождению собеса в 2024 году
▪ Подготовка к собеседованию по ML: ответы на основные вопросы
▪ 14 типичных вопросов с собеседования по ML
▪ Вопросы для собеседования на позицию ML-инженера
▪ Решения вступительных испытаний в ШАД
▪ Решения вступительных испытаний в ШАД архив
▪AI Interviews at Apple, OpenAI, Bloomberg & JP Morgan – What to Expect
▪Apple Machine Learning Engineer (MLE) Interview Guide
▪Junior ML-инженер | Выпуск 1 | Собеседование
▪Успешное собеседование в Яндекс
▪Как я проходил собеседования на Machine Learning Engineer
NLP
▪100 вопросов и ответов для интервью по NLP
▪Топ-50 вопросов собеседований NLP
▪ Вопросы по NLP 2024 года
▪ Еще 100 NLP вопросов
DS
▪Материалы для подготовки к интервью data science
▪ Вопросы/ответы DS
▪100 вопросов для подготовки к собесу Data Science
▪Временные ряды. Топ 50 вопросов
Python
▪100 вопросов для подготовки к собесу Python
▪ 50 вопросов по PyTorch
▪45 Вопросов с собеседований Pandas
▪400 самых популярных вопросов-ответов для Python-разработчика.
▪100 вопросов видео
▪LeetCode Pandas
AI
▪30 вопросов промпт инжинирингу
▪ 15 вопросов по LLM и AI
▪27 Вопросов по Chatgpt
Math
▪ Вопросы с собеседований по статистике
▪ Вопросы по теории вероятности
▪ LeetCode: разные решения с кодом
▪Top 75 Statistics Interview Questions
▪40 вопросов по статистике с собеседований на должность Data Scientist
▪Statistics Interview Questions & Answers for Data Scientists
SQL
▪Задачи с собеседований SQL
Подборка будет постепенно обновляться, делитесь в комментариях полезными ресурсами, которые стоит сюда добавить.
#interview #вопросыссобесов #ml #ds
@ai_machinelearning_big_data
👍100❤9🔥9🤬2😨2👌1
NumPy-QuadDType (
numpy_quaddtype
) — это реализация пользовательского типа данных (dtype
) для NumPy, которая обеспечивает настоящую арифметику с плавающей точкой четверной точности на разных платформах. Проект направлен на решение давних проблем с
np.longdouble
, предлагая согласованный, высокоточный тип с плавающей точкой независимо от базовой архитектуры системы, а также обеспечивая обратную совместимость long double
.Ядро numpy_quaddtype построено вокруг на двух ключевых компонентов:
QuadPrecision
, представляющий отдельные скаляры четверной точности;QuadPrecDType
, позволяющий использовать эти скаляры четверной точности в массивах и операциях NumPy.Отличительная черта numpy_quaddtype - его подход с двойным бэкэндом:
Sleef_quad
из библиотеки SLEEF, предоставляя настоящую 128-битную учетверенную точность.long double
, который может обеспечивать точность до 80 бит в некоторых системах, обеспечивая совместимость с np.longdouble
.Гибкость архитектуры
numpy_quaddtype
наследуется от компонентов ее ядра: QuadPrecisionObject
, хамелеоноподобная структура, которая может переключаться между формами:typedef union {
Sleef_quad sleef_value;
long double longdouble_value;
} quad_value;
typedef struct {
PyObject_HEAD
quad_value value;
QuadBackendType backend;
} QuadPrecisionObject;
QuadPrecDTypeObject
, который действует как мост, позволяя высокоточным числам гармонично работать в массивах и операциях NumPy:typedef struct {
PyArray_Descr base;
QuadBackendType backend;
} QuadPrecDTypeObject;
Он позволяет переключаться между бекэндами Sleef_quad (для SLEEF) и long double во время выполнения:
>>> import numpy as np
>>> import numpy_quaddtype as npq
# Using SLEEF backend (default)
>>> x = npq.QuadPrecision(3.5)
>>> x = npq.QuadPrecision(3.5, backend='sleef')
>>> repr(x)
QuadPrecision('3.5e+000', backend='sleef')
# Using longdouble backend
>>> y = npq.QuadPrecision(2.5, backend='longdouble')
>>> repr(y)
QuadPrecision('2.5e+000', backend='longdouble')
# Creating a NumPy array with QuadPrecision dtype
>>> z = np.array([x, x], dtype=npq.QuadPrecDType()) # SLEEF
>>> print(z)
[QuadPrecision('3.5e+000', backend='sleef')
QuadPrecision('3.5e+000', backend='sleef')]
>>> z = np.array([y, y], dtype=npq.QuadPrecDType("longdouble")) # longdouble
>>> print(z)
[QuadPrecision('2.5e+000', backend='longdouble')
QuadPrecision('2.5e+000', backend='longdouble')]
В тестах
numpy_quaddtype
с бэкендом SLEEF показал точность в 34 десятичных знаков. ULP (единица в младшем разряде) для основных арифметических операций ≤ 0,5000000001
, а для трансцендентных функций ≤ 1,0. C бэкендом Long Double показал точность, зависящую от платформы: 18-19 десятичных знаков в Linux и 15-17 в Windows.
В настоящее время ведётся подготовка к выпуску
numpy_quaddtype
в виде пакета Python, доступного через PyPI и conda. Также планируется направить предложение NEP для интеграции numpy_quaddtype
в экосистему NumPy и рассмотреть TLFloat
как потенциальную замену SLEEF в будущих версиях.numpy_quaddtype
на примере визуализации множества Мандельброта при экстремальном увеличении и моделирование квантового гармонического осциллятора для двухатомных молекул.@ai_machinelearning_big_data
#AI #ML #DS #Python #NumPy
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍13❤6🌚3
По сути это улучшенная альтернатива Jupyter.
Как работает Marimo?
▪️ При изменении значения переменной или взаимодействии с UI-элементом, Marimo автоматически выполняет все ячейки, зависящие от этой переменной, поддерживая консистентность кода и результатов.
Отличия от Jupyter:
▪️ Формат файлов: Marimo сохраняет блокноты как чистые Python-файлы (
.py)
, облегчая интеграцию с системами контроля версий, в отличие от Jupyter, использующего формат JSON (.ipynb). ▪️ Реактивность: В Marimo изменение данных автоматически обновляет все связанные ячейки, тогда как в Jupyter это требует ручного выполнения.
Основные преимущества Marimo:
▪️ Интерактивность: Встроенные UI-элементы, такие как слайдеры и выпадающие списки, синхронизируются с кодом без необходимости в дополнительных настройках.
▪️ Отсутствие скрытых состояний и детерминированный порядок выполнения обеспечивают надежность результатов.
▪️ Поддерживает возможность исполнять блокноты как скрипты, импортировать их в другие проекты и разворачивать как веб-приложения.
Marimo представляет собой мощный инструмент для разработчиков и исследователей, стремящихся к более эффективной и надежной работе с Python-блокнотами.
В галерее Marimo представлены блокноты на все случае жизни, созданные сообществом, демонстрирующие различные возможности и сценарии использования Marimo.
@ai_machinelearning_big_data
#marimo #ds #ml #tools #opensource #datascience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥14❤5🤔5
NVIDIA опубликовала в открытом доступе свой проект cuOpt. Это набор инструментов оптимизации, который использует ресурсы и возможности GPU для решения сложных задач линейного программирования, маршрутизации и логистики.
cuOpt помогает находить эффективные решения для проблем с миллионами переменных, где традиционные методы терпят крах., превращая «нерешаемые» задачи в реальные решения, без жертвования масштабом или скоростью. Это, своего рода, «турбокомпрессоре» для задач, где время и точность критически важны, от доставки товаров до расписаний производства.
cuOpt состоит из C++-движка и API (Python, C и другие), которые работают как обертки, которые дают возможность гибко интегрировать библиотеку в разные проекты.
Для задач маршрутизаций (TSP, VRP, PDP) cuOpt генерирует начальные решения, а затем улучшает их итеративно, используя эвристические алгоритмы. Это не «лобовое» вычисление всех вариантов, а умный поиск, который экономит ресурсы и время.
Методы работы с линейным программированием (LP) и смешанными целочисленными задачами (MILP) тоже уникальны. Для LP применяется PDLP — алгоритм первого порядка, который использует градиентный спуск и работает на GPU, альтернативно запускаясь на CPU с симплекс-методом.
Смешанное целочисленное программирование - это метод математической оптимизации, позволяющий решать задачи с использованием смеси непрерывных переменных (которые могут иметь любое значение, включая десятичные и дробные), дискретных переменных и двоичных переменных.
В MILP немного сложнее: на GPU выполняются эвристики для поиска допустимых решений (локальный поиск, «feasibility pump»), а CPU занимается ветвлениями и границами, улучшая оценку. Решения между GPU и CPU обмениваются в реальном времени, создавая гибридную систему.
Еще поддерживаются (с минимальным рефакторингом) инструменты AMPL и PuLP, с помощью которых сценарии использования cuOpt значительно расширяются.
В репозитории проекта разработчики собрали примеры и Jupyter-ноутбуки, которые можно запустить локально или в облачных сервисах: Google Colab (с выбором GPU-среды) или NVIDIA Launchable.
@ai_machinelearning_big_data
#AI #ML #DS #NVIDIA #CuOPT
Please open Telegram to view this post
VIEW IN TELEGRAM
❤44👍37🔥16🥰3